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ABSTRACT

The task of automatically segmenting 3-D surfaces representing object boundaries

is important in quantitative analysis of volumetric images, which plays a vital role

in numerous biomedical applications. For the diagnosis and management of disease,

segmentation of images of organs and tissues is a crucial step for the quantifica-

tion of medical images. Segmentation finds the boundaries or, limited to the 3-D

case, the surfaces, that separate regions, tissues or areas of an image, and it is es-

sential that these boundaries approximate the true boundary, typically by human

experts, as closely as possible. Recently, graph-based methods with a global opti-

mization property have been studied and used for various such segmentation applica-

tions. Sepecifically, the state-of-the-art graph search (optimal surface segmentation)

method has been successfully used for various such biomedical applications. Despite

their widespread use for image segmentation, real world medical image segmentation

problems often pose difficult challenges, wherein graph based segmentation methods

in its purest form may not be able to perform the segmentation task successfully.

This doctoral work has a twofold objective. 1)To identify medical image segmen-

tation problems which are difficult to solve using existing graph based method and

develop novel methods by employing graph search as a building block to improve

segmentation accuracy and efficiency. 2) To develop a novel multiple surface seg-

mentation strategy using deep learning which is more computationally efficient and

generic than the exisiting graph based methods, while eliminating the need for human

expert intervention as required in the current surface segmentation methods. This

developed method is possibly the first of its kind where the method does not require

and human expert designed operations.

To accomplish the objectives of this thesis work, frameworks of graph based and

deep learning methods is proposed to achieve the goal by successfully fulfilling the fol-

lowing three aims. First, an efficient, automated and accurate graph based method is

developed to segment surfaces which have steep change in surface profiles and abrupt
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distance changes between two adjacent surfaces. The developed method is applied and

validated on intra-retinal layer segmentation of Spectral Domain Optical Coherence

Tomograph (SD-OCT) images of eye with Glaucoma, Age Related Macular Degner-

ation and Pigment Epithelium Detachment. Second, a globally optimal graph based

method is developed to attain subvoxel and super resolution accuracy for multiple sur-

face segmentation problem while imposing convex constraints. The developed method

was applied to retinal layer segmentation of SD-OCT images of normal eye and vessel

walls in Intravascular Ultrasound (IVUS) images. Third, a deep learning based multi-

ple surface segmentation is developed which is more generic, computaionally effieient

and eliminates the requirement of human expert interventions (like transformation

designs, feature extraction, parameter tuning, constraint modelling etc.) required by

existing surface segmentation methods in varying capacities. The developed method

was applied to SD-OCT images of normal and diseased eyes, to validate the supe-

rior segmentaion performance, computation efficieny and the generic nature of the

framework, compared to the state-of-the-art graph search method.
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PUBLIC ABSTRACT

For the diagnosis and management of disease, segmentation of images of organs

and tissues is a crucial step for the quantification of medical images. Segmentation

finds the boundaries/surfaces, that separate regions, tissues or areas of an image,

and it is essential that these boundaries approximate the true boundary. Recently,

graph-based methods (specifically graph search/optimal surface segmetnation) with a

global optimization property have been studied and used for various such biomedical

applications. Despite their widespread use for image segmentation, real world medical

image segmentation problems often pose difficult challenges, wherein graph based

segmentation methods may not be able to perform the segmentation task successfully.

In this doctoral thesis, novel frameworks of graph based and deep learning methods

are proposed to accomplish the task of multiple surface segmentation. The devloped

methods tackle various challenges posed in real work medical imaging applications

where the target surfaces to be segmented are complex due to presence of pathologies.

The presented frameworks achieve higher segmentation accuracy compared to graph

search methods for such complex surface segmentation problems, and allows for sub-

voxel and super resolution accurate surface segmentations. The developed novel deep

learning based multiple surface segmentation method provides for a more generic and

computationally efficient framework, wherein a single network is capable of inferring

on multiple surface segmentations for both normal and diseased cases and thereby,

makes the framework different in principal as compared to graph based methods

in terms of elimination of human expert interventions (like transformation designs,

feature extraction, parameter tuning, constraint modelling etc.). The deep learning

based method is possibly the first of its kind where the method does not require and

human expert designed operations for surface segmentation applications. The devel-

oped methods have been extensively compared to the existing state-of-the-art graph

based mehtod and validated on various intra-retinal layer segmentation applications

in Optical Coherence Tomography (OCT) images of the eye.
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CHAPTER 1
INTRODUCTION

Medical images have made a great impact on medicine, diagnosis, and treatment.

The most important part of image processing is image segmentation. The task of

optimally identifying object boundaries and regions is important in segmentation and

quantitative analysis of volumetric medical images. Accurate segmentation of medical

images is a key step for diagnosis, maintenance and treatment planning of diseases.

The segmentation problems discussed and investigated in this doctoral thesis work are

identified as surface segmentation problems. Such problems relate to segmentation of

the boundary of an organ, tissue or any object of interest within an image.

Popular graph based segmentation approaches: graph search [2] and graph-cut

[3] [4] have been extensively used for various such image segmentation applications.

These approaches formulate the segmentation problem as an energy minimization

problem wherein each energy term models a specific aspect of the target object seg-

mentation. The framework of these approaches provide for a robust and flexible plat-

form to extend these methods to incorporate numerous aspects of the segmentation

problem at hand while maintaining the optimality of the solution. The advantages

of using such a formulation are: 1) flexible modeling ability to incorporate various

terms like likelihoods, neighbour relationships, prior information, context informa-

tion and surface/object interaction; 2) graph based methods provide a framework for

computing efficient solutions for a large variety of image segmentation problems.

Many, real world medical image segmentation problems often pose difficult chal-

lenges, wherein graph based segmentation methods in its purest form may not be

able to perform the segmentation task successfully. The problems generally arise due

to increased complexity in the target surfaces due to presence of pathology. Hence,

traditional graph based approaches are not able to model such surfaces with high

accuracy. Furthermore, the accuracy of the segmentation in these methods is limited
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to the voxel level and thus, does not allow for subvoxel accuracy in segmentation

of the surfaces. However, as discussed before these methods provide a very flexi-

ble framework for novel incorpoations of prior informations to aid the segmentation

of challenging surface segmentation problems. This work, in part, shall exploit the

graph search framework in order to segment certain difficult segmentation problems

and extend the framework to allow for subvoxel accuracy.

Also, graph based frameworks require human interaction/intervention in various

aspects. Human expert designed transforms, features, region of interests, parameter

tuning and modelling of target surfaces is required for efficient and accurate segmen-

tation. Failure to design any of the required components reasonably shall result in

poor segmentation results, even though the result may be optimal with respect to

the model used in the framework. Furthermore, the framework is exteremely slow

and requires substantial memory to process large volumetric images in the original

resolution. The complexity of memory requirement and processing time exponentially

rises with the increase in number of target surfaces. Deep learning on the other hand,

where all transformation levels are determined from training data, instead of being

designed by experts [5], has been highly successful in a large number of computer

vision and image analysis detection tasks, substantially outperforming all classical

image analysis techniques [6], and, given the spatial coherence that is characteris-

tic of images, typically implemented as Convolutional Neural Networks (CNN) [6].

In part, this thesis work shall leverage the observations and structure of the graph

search framework to design a novel CNN based approach to perfom multiple surface

segmentation tasks, without the requirement of any expert intervention.

The goal of this work is twofold. 1) Identification of segmentation problems which

are difficult to segment using the traditionally employed graph based segmentation

methods (specifically graph search) and develop novel graph based methods which

build upon the existing graph based methods for more accurate and efficient segmen-
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tation of such problems with validation on medical image segmentation applications.

2) Develop a deep learning based multiple surface segmentation approach as means

for a generic segmentation approach which does not require any human expert de-

signed transforms, features etc and at the same time is more efficient, accurate and

reduces complexity of memory requirement compared to graph search method.

In this doctoral work, majority of the applications are based on intra-retinal layer

segmentations in Spectral Domain Optical Coherence Tomography (SD-OCT) images

of the normal eyes and eyes with pathology. However, the developed methods are

generic and are readily applicable to other similar surface segmentation applications.

1.1 Thesis Organization

The rest of this thesis is organized as follows.

• Chaper 2 breifly discusses technical details regarding the popular graph search

framework and Convolution Neural Nets (CNNs). Both these respective frame-

works form the building blocks of the developed novel methods for multiple

surface segmentation. Further, since majority of the applications in this work

are related to segmentation of surfaces in SD-OCT volumes, a brief literature

review of simultaneous multiple intra-retinal surface segmentation methods is

provided.

• Chaper 3 identifies segmentation problems which are difficult to solve using

the exisiting graph search based methods, explores the need for a more genreic

method for multiple surface segmetation, describes the motivations and finally

presents the aims for this thesis work.

• Chaper 4 describes the novel graph based method developed for multiple sur-

face segmentation using truncated convex priors. Details about the method,

summary of the applications and experiment results are presented for the si-

multanoeus intraretinal layer segmentation of specific surfaces in Optical Co-
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herence Tomography (OCT) images of normal eye, eye with Glaucoma eye with

Age related Macular Degeneration (AMD) and eye with Pigment Epithelium

Detachment (PED).

• Chaper 5 provides the details of the novel method developed for multiple sur-

face segmentation in irregularly sampled space. The chapter summarizes the

applications and experiment results of the method for multiple surface segmen-

tation of three important intraretinal layers in OCT images of normal eye and

analyzes subvoxel and super resolution accuracy of the segmentations. Addi-

tionally, this chapter also summarizes the experiment results for application of

the method to segment two membrances in Intra Vascular Ultrasound Images

(IVUS) images and compares it with other publicly available methods used on

the same data.

• Chaper 6 describes in detail the developed method for multiple surface segmen-

tation using CNNs. Futher, summary of the experiments, results and analysis

for single and multiple surface segmentation in OCT images of both normal and

diseased eye is provided.

• Chaper 7 concludes the previous chapters and discusses the possible limitations

and the potential future work.

Each chapter in this thesis consists of various notations and formulations. In

order to maintain consistency and ease of understanding for the reader, each chapter

related to a specific aim of this thesis shall reformulate the problem mathematically.

Further, state-of-the-art graph search method [2] has been used in conjunction with

other methods to perform analysis and comparisons with the developed methods in

this work. The methods developed in this thesis are generically applicable to similar

surface segmentation problems and are not limited to medical image segmentaion

applications.
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CHAPTER 2
GRAPH SEARCH AND CONVOLUTION NEURAL NETS

2.1 Graph Search (Optimal Surface
Segmentation)

Optimal net surface segmentation method [7] is the pioneer work which first in-

troduced a graph based framework to segment multiple surfaces in the N -D space

(N ≥ 2) in polynomial time. The framework used a key observation regarding the

column structure in digital volumetric images to generate multi-column graphs, where

every voxel is transformed to a node in the graph space. The algorithm constructs

various edges between the nodes to encode the modelling of the surface and prior

information, such that the solution of the same using a minimum st-cut [8], pro-

vides the resultant surfaces. Furthermore, the method guarantees global optimality

with respect to the constraints employed. The popular optimal surface segmenta-

tion method (graph search) [2] was infact developed using the optimal net surface

segmentation method and demonstrated the method’s application to various surface

segmentation problems. The method is currently regarded as the state-of-the-art

method for multiple surface segmentation.

Note- In this work the terms graph search and optimal surface segmentation

method shall be used interchangebly, due to the popularity of the former term (graph

search) but infact both the methods refer to the same method [2].

Graph search methods [2] [9] are an efficient tool employed for optimal surface

segmentation of multiple globally optimal surfaces in volumetric datasets. The state-

of-the-art method with a global optimization property has been widely used for var-

ious medical image segmentation tasks, such as knee bone and cartilage [10] [11],

heart [12] [13], airways and vessels tress [14] [15], lungs [16], liver [17], prostate and

bladder [18] and retinal surfaces [19] [20] [21]. The method is capable of segmenting

both ‘terrain like’ and ‘closed’ surfaces with global optimality with a pre-defined set

of constraints. This technique has also been used to segment objects and surfaces
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with more complex topologies by making use of various prior information [9] [22] and

pre-segmentation of the target object. The method is readily extensible to segment

multiple terrain like surfaces in N (N ≥ 2) dimensions, though in this review, we

briefly discuss the method for segmenting multiple surfaces in a 3-D image volume

represented as a cube.

Consider a volumetric image I(x, y, z) of size X × Y × Z. A surface is defined

as a function S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and

S(x, y) ∈ z = {0, 1, ...Z − 1}. Each (x, y)-pair corresponds to a column of voxels

{(I(x, y, z)|z = 0, 1, . . . , Z − 1}, denoted by col(x, y) parallel to the z-axis. We use p

and q to denote two neighboring (x, y)-pairs in the image domain x × y and Ns to

denote the neighborhood setting of image domain. The function S(p) can be viewed

as labeling for col(p) with the label set z (S(p) ∈ z). Thus, the surface function

S(p) intersects col(p) at a single voxel location. The method seeks to simultaneously

find λ (λ ≥ 1) globally optimal surfaces Si(x, y), i = 1, 2 . . . λ in I subjected to prior

informations and certain pre-defined constraints.

The method encodes certain prior informations into the graph which model the

target surfaces. The first is a cost function
∑

p∈x×yDi(Si(p)), which measures the

total cost of all voxels on a surface Si. An optimal surface is the surface with the

minimum cost among all the feasible surfaces definable in the 3-D volume. Second,

and the feasibility of the surface with respect to certain surface smoothness and

surface separation constraints.

The surface smoothness
∑

(p,q)∈Ns Vpq(Si(p), Si(q)) as shown in Eqn 2.1, controls

the feasibilty of surface positions in two neighboring columns. The surface smoothness

term herein is modelled as a hard constraint and specifies the maximum possible

difference between surface positions of two neighboring columns.
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Vab(Si(p), Si(q)) =


∞, if |Si(p)− Si(q)| > ∆pq,

0 , otherwise

(2.1)

where ∆pq is the hard constraint imposed for surface smoothness.

The surface separation term Hp(Si(p), Si+1(p)) as shown in Eqn 2.2, similarly

incorporates a hard constraint for the allowed minimum and maximum separation

between two adjacent surfaces.

Hp(Si(p), Si+1(p)) =


∞, if (Si+1(p)− Si(p)) < δmin,

∞, if (Si+1(p)− Si(p)) > δmax,

0 , otherwise

(2.2)

where δmin and δmax are the allowable minimum and maximum hard constraint.

Example of the surface smoothness and surface separation constraints are shown in

Fig 2.1.

λ subgraphs G1, . . . Gi, Gi+1, . . . Gλ are constructed where each voxel in the image

is represented by a node in the subgraph Gi for a given surface Si. The method

enables the incorporation of the following prior information. First, the likelihood of

a voxel belonging to a given surface Si where the inverse likelihood for each voxel

is encoded in the graph and is termed as the data cost. Second, the smoothness

of a given surface Si which is defined as the maximum allowed jump of any two

adjacent voxels on a feasible surface in a given direction and is commonly termed as

hard constraints. These constraints are incorporated by adding inter-column edges

between nodes of a pair of neighboring columns in graph Gi for surface Si. Lastly, the

separation between a given pair of two adjacent surfaces which is also modelled as a

hard constraint. This information is encoded by adding inter-surface edges between
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the corresponding columns (columns formed on the same (x, y) pair) of graphs Gi

and Gi+1 for two adjacent surfaces Si and Si+1.

The graph G for the simultaneous segmentation of λ surfaces is constructed by the

union of the λ subgraphs Gi’s with the addition of the inter-surface edges as discussed

above. A single minimum st-cut is then computed on graph G to obtain the target

surface segmentations Si’s.

The hallmark of the method is the allowed flexibility in modelling the surface

smoothness and surface separation term as shown in Eqn 2.1 and 2.2 respectively.

For instance, the surface smoothness term can be modified as shown in Eqn 2.3

to impose a convex penalty based on the difference in surface position of the two

columns [2] , and the co-efficient w can be used as tuning parameter to control the

degree of regularization of the surface (provides for a balance between the data cost

term and the surface smoothness term). Example of surface smoothness constraint

with convex penalty is shown in Fig 2.2. The surface smoothness term can similarly

be modified to incorporate prior information [9] [22].

Vab(Si(p), Si(q)) = w × ψ(Si(p)− Si(q)) (2.3)

where w > 0 is the weight co-efficent and ψ(.) is a convex function.

2.2 Convolution Neural Nets (CNNs)

Convolution neural netwrork (CNN) [23] [24] [6] has recently gained popularity

and has been successfully employed for a variety of computer vision problems. A

generic neural network is generally organized into at least three layers of neurons: the

input layer, the hidden layer, and the output layer. For a fully connected network,

each neuron is connected to the neurons from the preceding layer and takes in as

input the values of them. Let x1, x2, . . . , xN denote the inputs to a neuron zq. The
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Figure 2.1: (left) Surface smoothness constraint for two neighboring columns p and
q for a surface Si. The arcs in red show the feasible st-cut for a given surface posi-
tion Si(p) for column p. (right) Surface separation constraint for two corresponding
columns for adjacent surfaces Si, Si+1. The arcs in red show the feasible st-cut for a
given surface position Si+1(p) for column p.

Figure 2.2: Surface smoothness constraint for two neighboring columns p and q for a
surface Si. The arc in red shows a st-cut for a given surface position Si(p) for column
p. The smoothness cost for the given cut is w × ψ(Si(p)− Si(q)).
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intermediate output at the respective neuron is computed as :

aq =
n=N∑
n=1

wqnxn + bq (2.4)

where wqn is a weight parameter and bq is a bias term associated with the ouput zq

defined as zq = f(aq) and f(.) is the activation function (introduces non-linearity).

Given a set of training examples, the objective of the training process is to learn the

parameters wqn, bq so as to minimize some objective or loss function. The standard

approach to learning these parameters is the error backpropagation algorithm [24].

A CNN [6] is a multilayer, hierarchical neural network but bears at least three

principal factors different from a generic neural network: local receptive fields, weight

sharing and spatial pooling layers. The network topology exploits the stationary

nature of natural images by learning features using locally connected networks. CNN

employs a local receptive field rather than a global one, which is accomplished by

capturing local structure of image through constraining each neuron to depend only

on a spatially local neighborhood of the neurons in the proceeding layer. Moreover,

weights are shared across different neurons in the same layer, which can be translated

to evaluating the same filter over all local windows of the input image. A feature

in the image at some location can be calculated by convolving the feature detector

and the image at that location, hence such a layer in the network is termed as a

Convolution Layer [6].

Spatial pooling [6] in CNN is to divide the image into an array of blocks and then

evaluate a pooling function over the responses in each block. The goal of pooling is to

reduce the dimensionality of the convolutional responses and enforce a translational

invariance (to a small degree) into the model. In the case of max pooling [6], the

response for each block is taken to be the maximum value over all response values

within the block. A typical CNN consists of multiple layers, alternating between

convolution and pooling. Compared with shallow CNN architectures, deep CNN
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Figure 2.3: Illustration of a simple CNN architecture for image classification into 4
classes. [1]

has more hidden layers. Lower layers which are defined as the ones closer to the

input construct low-level convolutional filters and provide low-level encoding of the

input image. In contrast, higher layers learn more and more complicated structures.

In CNN, stride length is used to specify the number of pixels with which the local

receptive field is moved to the right from left (or down from top). An example of a

CNN architecture for image classification is shown in Fig 2.3. The layers used in the

CNN architecture for this work are described in detail in Section 6.3.2.

Some examples of successfuly application of CNNs in computer vision are image

classification and object recognition [6] [25] [26] [27], text recognition [28] and action

recognition [29]. In medical imaging analayis applications, CNNs have also been

successfully applied for body part recognition [30], brain tumor segmentation [31],

lung nodule classification [32], multiple sclerosis lesion segmentation [33], pulmonary

embolism detection [34], glaucoma detection [35], gland detection [36], mammogram

segmentation [37] and diabetic retinopathy detection [38]. However, most of these

applications are where the CNNs have been used for classification, i.e. assigining a

class to each pixel/voxel in the image or assigning a class/label to the entire image.
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2.3 Related Work for Retinal Layer
Segmentation in OCT

Spectral Domain Optical Coherence Tomography (SD-OCT) [39] [40] is widely

used in imaging of the retina because of its ability to extract cross-sectional informa-

tion of the retina. Automated methods for layer segmentation in OCT volumes have

certain advatages compared to manually tracings the retinal layers, such as improved

time-efficiency, and low intra-/inter-observer variability.

Intensity-based surface segmentation methods had been developed which utilize

correlation between adjacent A-scans [41], iterative thresholding technique [42] using

prior information from vessels and segmentation using a Canny edge detector [43] [44].

Such methods suffer from limitations based of incomplete incorporation of textural

information and are therefore sensitive to noise, blood vessel shadows, and motion

artifacts.

Active contour based methods [45] [46] [47], shape model based method [48] [49]

and machine-learning-based methods [50] [51] [52] are other common algorithms em-

ployed for segmentation of surfaces in OCT volumes. However, these methods are not

fully automated, require prior information to design various term within the respec-

tive models, does not provide flexibility for different applications and are primarily

designed for target specific applications.

Graph based methods were developed which transform each voxel of the image into

a node in the graph and then employs various graph based algorithms to segment the

target surfaces based on the formulation. Traditional graph algorithms like dynamic

programing and Dijakstra’s method for finding the shortest path have been applied to

segment retinal surfaces in OCT B-scans [53] [54] [55] [56]. However, these methods

also require careful design of transformations, initlaization of starting points and does

not exploit the full 3-D information.

Finally, the set of the methods based on the state-of-the-art graph search (optimal
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surface segmentation) [2] [7] were developed and applied to numerous multiple surface

segmetnation applications realted to retinal layers in OCT volumes. The method was

first applied to simultaneously detect multiple retinal surfaces in SD-OCT macular

scans [19]. However, the major practical limitation of the method was the time

complexity which grows exponentially with the size of the image and the number

of target surfaces. To overcome the limitation, the multi-resolution graph search

technique [20] was developed to accelerate the processing time and was applied to

SD-OCT optic nerve head (ONH) scans for multiple surface segmentation. Further,

machine-learning based cost generation for graph seach [57] [58] was developed and

was applied to surface segmentation of OCT images of humans, mice and canines.

The framework was further extended to incorporate prior information of the surface

profiles [9] [22]. By adding the prior information, the graph-theoretic algorithm has

added the ability to entirely consider both global and local optimization and achieves

better robustness.
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CHAPTER 3
MOTIVATION AND SPECIFIC AIMS

3.1 Motivation

The popular graph search method has been extensively used for various surface

segmentation application. However, the method may fail or may not be efficient

enough in certain real world applications. The applications discussed in this thesis

work are primarily medical image segmentation application, although the developed

methods can be generically applied to any similar segmentation problem. Here, such

identified segmentation problem and the motivation for development of methods to

solve such problems is enumerated in Section 3.1.1. Furthemore, the method re-

quires human expert designed data cost, transformations, smoothness constraints

etc. Therefore, the need for a generic method to eliminate human expert intervention

for surface segmentation problems is discussed in Section 3.1.2.

3.1.1 Segmentation Problems Difficult to Solve Using
Graph Search

First, the methods may fail when abrupt changes are present in target surface

topology. Graph search based methods [2] [7] may have a problem in cases with pres-

ence of steep surface smoothness changes and abrupt surface separation (distance)

changes between a pair of interacting surfaces. Some examples in real world ap-

plications are spectral-domain optical coherence tomography (SD-OCT) volumes of

subjects with severe glaucoma [59], dursen due to age-related macular degeneration

(AMD) [60] (Fig. 3.1 shows an example) and Pigment Epthithelium Detachement

(PED) [61] (Fig. 3.2 shows an example) in the eye. The graph search method as

discussed in Section 2.1 uses hard smoothness constraints that are a constant in each

direction to specify the maximum allowed “jump” of any two adjacent voxels on a

feasible surface. For multiple surface detection, the method makes use of maximum

and minimum constant constraints for the surface separation to specify the maxi-
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S1

S3

S2

Figure 3.1: Steep change in surface smoothness can be seen in SD-OCT image of
an eye with severe glaucoma (left). Abrupt changes in surface separation between
surface 2 (S2) and surface 3 (S3) can be seen in SD-OCT image of an eye with AMD
(right).

mum and minimum allowed distances between a pair of surfaces. This does not allow

for flexibility in constraining surfaces. Steep jumps in surface positions of neighbor-

ing and corresponding graph columns can only be captured using high values of the

smoothness and separation constraints, which results in unconstrained surfaces.

One possible way to solve this problem is to use varying feasibility constraints

learned from a training set, as reported in [19]. However, this method cannot penalize

the deviation inside the allowed constraints. Methods employing trained hard and soft

constraints [22] [9], use prior terms to penalize local changes in surface smoothness and

surface separation. The prior term requires learning and may give inaccurate results

when there is plenty of variation within the data. It may also result in over smoothing

of the surface since it is not discontinuity preserving. Moreover this method is more

time intensive than tradional graph search method.

Furthermore, approaches using multiple resolution technique [62] for reduction

of time and memory consumption, requires image flattening and identification of
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Figure 3.2: Example of an image slice with PED. Expert manual tracings shown as
Yellow - Internal Limitng Membrane (ILM), Red - Outer Retinal Pigment Epithelium
(ORPE), Blue - Inner Choroid (IC). The PED is indicated by the brown arrow (left).
The steep change in surface smoothness of ORPE is indicated by the purple arrow
and the abrupt change in the surface separation between ORPE and IC is indicated
by the green arrow (right).

region of interest at each step. Identifying a region of interest for cases with abrupt

surface smoothness or separation changes due to presence of pathological objects

is difficult and may result in suboptimal results. Therefore, incorporating a prior

which preserves these discontinuities (does not over penalize these abrupt changes

in surface topology) shall provide for more flexibility and accuracy for segmentation

of such surface topologies. This problem is addressed by developing a novel graph

based method while incorporating a truncated convex prior (similar to a saturation

function) for modelling the surface smoothness and surface separation constraints.

Second, inability of the graph search method to achieve subvoxel accuracy while

using convex priors (convex penalty for surface smoothness/separation) by performing

segmentation tasks in an irregularly sampled space. Within the graph search frame-

work Ref (2.1), the graph is constructed such that the graph nodes correspond to the
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(a) (b) (c) (d) (e)

After 
Deformation

Sampled 
voxels

Center of voxels

Nodes in graph space

Distance indicator

Figure 3.3: Illustrative example of non-equidistant spacing between adjoining graph
nodes. (a) A voxel column in a 3D image. (b) Representation of voxel column in
(a) as graph nodes in the graph space. (c) Shifted positions of the graph nodes
after the deformation is applied in the vertical direction to the voxel column. (d)
A voxel column in a 3D image with sampled voxels shown in brown boundary (e)
Representation of voxel column in (d) as graph nodes in the graph space.

center of evenly distributed voxels. A volumetric image data is typically represented

as an orthogonal matrix of intensities. Volumetric images are obtained by discretizing

into voxels the continuous intensity function uniformly sampled by sensors, resulting

in partial volume effects [63] [64]. Partial volume effects contain additional infor-

mation that can be exploited using graph techniques to achieve subvoxel accuracy

for surface segmentation by applying a deformation [65]. The deformation may be

applied using a displacement field directly obtained from the volumetric image data.

Specifically, such a deformation shall result in non-equidistant spacing between the

adjoining nodes in the graph due to shifts in the centers of voxels because of the

deformation as shown in Fig 3.3(b-c). For the purpose of terrain like surface segmen-

tation in 3-D volumes using graph search methods, this may be considered equivalent

to a generalized case of a cube volume formed by voxels whose centers are irregularly

spaced along the z dimension.
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The traditional graph search method [2] is not capable of segmenting surfaces

with subvoxel accuracy since the deformed volume comprises of voxels with irregu-

lar spacing between the adjoining centers of the voxels. To address this problem, the

subvoxel accurate graph search method [65] was developed to simultaneously segment

multiple surfaces in a volumetric image by constructing a graph with non-equidistant

spacing between the adjoining nodes. The method first creates the graph using the

conventional optimal surface segmentation method [2], then deforms it using a dis-

placement field and finally adjusts the inter-column edges and inter-surface edges to

incorporate the modification of these constraints due to the displacement in the center

of the voxels. The method employs hard surface smoothness and surface separation

constraints. Thus, incorporating a convex prior to the graph search based framework

to achieve subvoxel accuracy of segmentations is of significance to provide for more

accurate and flexible modeling of target segmentations. Furthermore, the notion of

irregularly sampled space can be further used for creating subvolumes (possibly region

of interests) from a given volume by irregularly sampling voxels along each column in

the z dimension, which shall result in non-equidistant spacing between the adjoining

voxel centers as shown in Fig 3.3(d-e). Therefore, to address this segmentation prob-

lem a new graph based method is developed to incorporate convex priors for multiple

surface segmentation in irregularly sampled space.

3.1.2 Need for a Generic Surface Segmentation
Method Without Requirement of Human Expert

Intervention

The exisiting surface segmentation approaches as discussed in Section 2.3 includ-

ing the state-of-the-art graph search approach, offer certain flexibities in terms of

using the methods for various application. However, none of the methods are generic

enough or completely independent of expert based design of transformation, features,

parameters and constraints. In this doctoral work, all the applications have been
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compared to the graph search method which has proven to be superior to the rest of

the methods discussed for the use in surface segmentation applications. Therefore,

the limitations of the existing methods discussed in this section is majorly related to

the graph search method, however most of them are also valid to the other methods

in certain respects as well.

First, the graph search method is principally dependent on the design of the data

cost term, surface smoothness term and the surface separation term. Failure, in

resaonable design of any of these terms shall result in poor segmentation results, even

though the solution shall be optimal with respect to the objective function. This

attribute, transfers the key responsibility of the design of these term to users. A good

design of these parameters is therefore also dependent on the kind of application. For

example, the data cost term may be designed in a different manner for a normal case

compared to a diseased case or the surface smoothness term is different for surfaces

in normal case compared to a case with glaucoma where certain surface profiles are

more complex. Such a design, results in application specific design of terms and thus,

does not offer a generic design which is applicable to majority of the applications

related to a certain body part or tissue.

Second, the surface constraints also require tuning of certain parameters. For

example, the weight co-efficient discussed in Section 2.1 for Eqn 2.3. These param-

eters may be tuned using a grid search approach, however the tuning becomes very

difficult in cases where the target surfaces are complex due to presence of a pathol-

ogy. Furthermore, in such cases, even though the parameter is tuned for the entire

dataset, there generally exists parameters specific to each volume which may provide

better segmentation results. Therefore, it is difficult to tune the parameters for such

applications and to model surface constraints which are generic enough to encompass

the entire dataset.

Third, the traditional graph search method [2] is limited by inefficiencies with
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respect to the memory requirement and processing time. The former stems from the

fact that the entire volume has to be loaded into the memory in terms of nodes and

edges in the underlying graph which increases with the increase of target surfaces. The

inefficency in processing time is caused by time bound relationship with respect to

the number of nodes and edges in the graph for solving the st-min cut problem using

the max flow algorithm. Therefore, previously, segmenting OCT volumes in original

resolution used to be a time intensive process. In order to tackle this challenge,

the multi-resolution graph search [20] framework was developed which extracted a

region of interest iteratively at each downsampled scale, thus making the method

computationally efficient. However, the region of extraction scheme and the order of

the surfaces to be segmented requires expert intervention. Furthermore, the schemes

are also application specific.

Therefore, evidently, there is a need for a method which is generic enough and

eliminates the aspect of expert human intervention with respect to designing of the

various attribures required by the segmentation method. For example, a method

which is able to segment surfaces in both normal and diseased cases with the very

same parameters, does not require the design of data terms and surface constraints

by the users, does not require expert tuning of parameters and at the same time

is efficient in terms of memory requirement and processing time. To address, this

problem, the popular deep learning framework using Convolution Neural Nets (CNN)

are employed to learn the essential transformations, features and paramters from

training data without any human intervention. The design of the framework is done

by making certain important observations within the graph search framework and

then leveraging them to construct a framework with a close relationship with the

graph search method.

3.2 Specific Aims

In particular, the thesis has the following aims:
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• Aim 1: Multiple surface segmentation with truncated convex priors.

In this aim, we will seek to model the surface smoothness penalty and the

surface separation penalty in the graph search framework as a truncated convex

function to avoid over penalizing the sharp changes in the surface topologies.

Specifically, we propose the following:

– Aim 1.1: Develop single surface segmentation algorithm using truncated

convex prior: Applied to segmentation of the Internal Limiting Membrane

(ILM) in Spectral Domain Optical Coherence Tomography (SD-OCT) vol-

umes with a deep cup.

– Aim 1.2: Develop a multiple surface segmentation approach with trun-

cated convex priors and validate on SD-OCT datasets of normal eyes and

eyes with Age Related Macular Degeneration (AMD).

– Aim 1.3: Simultaneous segmentation of ILM, Outer Retinal Pigment Ep-

ithelium (ORPE) and Inner Choroid (IC) in SD-OCT volumes with Retinal

Pigment Epithelial Detachment (PED) using truncated convex priors.

• Aim 2: Optimal multiple surface segmentation with convex priors in

irregularly sampled space.

In this aim, we propose the generalization of the graph search method with

convex priors framework to be applicable in irregularly sampled space wherein

the nodes within the columns of the constructed graph are allowed to have

non-equidistant spacing between them. Specifically, we propose the following:

– Aim 2.1: Develop the method for Optimal multiple surface segmentation

with convex priors in irregularly sampled space.

– Aim 2.2: Prove the correctness of the graph construction with respect to

global optimality of the solution.
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– Aim 2.3: Validation of the method for subvoxel accuracy and super res-

olution segmentation accuracy.

• Aim 3: Multiple surface segmentation using deep learning. In this

aim, we propose to design a novel framework using deep learning to accomplish

the task of multiple surface segmentation, with the goal of attaining higer ac-

curacy and computational efficiency comapred to graph search method. The

framework shall also eleiminate the requirement of any human expert interven-

tion. The framework shall be gneric enough such that the same trained network

is able to infer on multiple surface segmentaion for both normal and diseases

cases, unlike graph search which requires two different set of optimized param-

eters and human expert designed transformations and strategies. Specifically,

we propose the following:

– Aim 3.1: Develop the deep learning based method for single surface seg-

mentation and validate on SD-OCT volumes of normal eye.

– Aim 3.2: Develop the deep learning based method for multiple surface

segmentation and validate on SD-OCT volumes of normal eye and eye with

AMD.
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CHAPTER 4
MULTIPLE SURFACE SEGMENTATION USING TRUNCATED

CONVEX PRIORS (AIM 1)

4.1 Introduction

The objective of Aim 1 is to overcome the challenges posed by real world

applications, wherein the target surfaces have steep change in surface smoothness

or/and abrupt change in surface separation between two surfaces. Such surfaces

are difficult to segment using the traditional graph based methods as discussed in

Section 3.1.

The goal of this aim is to develop an automated graph based segmentation algo-

rithm by employing a truncated convex penalty for surface smoothness and surface

separation to capture the steep and abrupt changes in surface profiles and surface

interactions. The method also ensures the enforcement of a minimum separation be-

tween a surface pair. A truncated convex penalty is discontinuity preserving having

a bound on the largest possible penalty. An example of a truncated convex penalty

function is shown in Fig. 4.1. This avoids over penalizing sharp changes in surface

smoothness and surface separation. The main idea is to take advantage of a local

search technique. The advantage of using such a method is two folds: it allows for

enforcement of truncated convex penalty, and it is significantly faster than graph

search methods for larger data volumes. A local range search method explores a

large search space by considering a range of labels. A label may be interpreted as

the surface position for a column in a 3-D volume. It gives a solution by iteratively

computing a maximum flow for a subset of the voxel domain. The key idea is at each

iteration the best labeling is selected by either retaining its current label or changing

to a new label while maintaining the truncated convex constraint. The range expan-

sion method [66] allows for the incorporation of a truncated convex penalty. Using

this method as a building block, we develop techniques for single surface and multi-

ple surface segmentation with truncated convex penalties for surface smoothness and
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Figure 4.1: Example for a linear convex penalty (left) and a linear truncated convex
penalty (right). S(a) and S(b) are surface positions for a pair of neighboring columns
a and b. M is the truncation factor (bound on the maximum possible penalty).

surface separation. The method is further evaluated and validated by segmenting

specific surfaces in normal OCT data and OCT data with pathologies like Glaucoma,

AMD and PED.

4.2 Single Surface Segmentation Using
Truncated Convex Priors (Aim 1.1)

Spectral-domain optical coherence tomography (SD-OCT) is used clinically for the

diagnosis and management of glaucoma, with the internal limiting membrane (ILM)

being one important structure of interest as it reflects the upper bounding surface of

the optic cup. Glaucoma is the second leading cause of blindness in the developed

world, and is characterized by gradual cupping of the optic nerve head (ONH) and

visual field loss [59]. The hallmark of severe glaucoma is the deep cupping of the

optic nerve, which is visible in cross-sectional ONH-centered SD-OCT volumes by an

increased steepness of the internal limiting membrane in the central cup region. In

such cases of severe glaucoma, the boundary of the optic cup can become very steep

and difficult to segment as illustrated in Fig 4.2.
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Figure 4.2: (Central B-scans (xz slice) from optic nerve head centered scans from (a)
subject with less severe glaucoma, (b) subject with more severe glaucoma.

4.2.1 Method Design

Consider a volumetric image I(x, y, z) of size X × Y × Z. A surface is defined as

S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and S(x, y) ∈ z =

{0, 1, ...Z − 1}, thus intersecting each column at a single voxel location. Each (x, y)

pair denoted as col(x, y) forms a column parallel to the z-axis. We use Ns to denote

the neighborhood setting of image domain.

The goal of single surface segmentation problem is to seek the ”best” surface

S(x, y) in I, which is transformed into an energy minimization problem. The function

S(x, y) can be viewed as labeling with the label set z. Thus, the surface segmentation

problem, in fact, is a multiple labeling problem. To simplify the notation, we use a

and b to denote two neighboring (x, y) pair in the image domain x × y.

Energy function - The energy function E(S) for the surface S takes the following

form:

E(S) =
∑
a∈x×y

D(S(a)) +
∑

(a,b)∈Ns

Vab(S(a), S(b)) (4.1)

The data cost term D(S(a)) measures the total inverse probability of all voxels
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on a surface S, while the surface smoothness term
∑

(a,b)∈N Vab(S(a), S(b)) measures

the extent to which S is not piecewise smooth.

It is known that the energy function E(S) can be minimized by minimum st-cuts

[8] when Vab(.) is convex [67]. Since, a convex Vab(.) may over smooth the surface S, its

highly desirable to make use of a truncated convex Vab(.) to preserve discontinuity of

the target surface. Convexity encourages smoothness while truncation helps preserve

the surface discontinuity. A truncated convex function takes the following form:

Vab(S(a), S(b)) = wab (min(f(S(a), S(b)),M)) (4.2)

where f(.) is a convex function, M > 0 is the truncation factor, wab ≥ 0.

4.2.2 Method Overview

A local range search technique like the range expansion algorithm [66] is applied

to enforce the truncated convex penalties. Since the algorithm is iterative in nature,

a constant interval length L is defined to determine the subset of consecutive labels

at each iteration. An interval is defined as T ⊂ z where z = {0, 1, ...Z − 1}. An

interval of length L at iteration m is defined as Tm = [m,min(m + L − 1, Z − 1)],

where m = 0, 1, ...Z − 2. At each such interval Tm a graph Gm is constructed using

each voxel from I(x, y, z) as a node where x ∈ x, y ∈ y and z ∈ Tm. Example of

consecutive interval construction is shown in Fig 4.3. The basic idea of the algorithm

is to iteratively compute the minimum st-cut on each of the graphs Gm constructed

for each consecutive interval. At each interval, the best label is selected by either

retaining the label from the previous graph Gm−1 solution or by changing to a new

label belonging to the current interval. The iterations are continued until all the de-

fined intervals have been iterated over, at the end of which the total energy E(S) of

the segmented surface S is compared to the previous solution. If the energy is found
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D

Tm

Tm+1

Tm+2

Figure 4.3: Example of interval construction for a 2D data cost slice D for surface S
with 3 neighboring columns and Z=4. Each voxel is represented as a node. Length
of the interval (L) = 2. Consecutive interval (T ′ms) construction at each iteration m
is shown.

Initialize all
surface S.

Solve st-cut
and update 
labels for 
surface S. 

Return the
final labels for
surface S.

Generate 
label intervals 
Tm for all 
surface S.

Build graph Gm
with the addition
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and inter-column
arcs.

Is m > N?

Yes
Yes

No

m← m+1
No

Iteration
index
m=0.

Does energy
function E(S)
decrease?

Figure 4.4: Method pipeline for single surface segmentation. N is the maximum index
of possible iterations.

to have decreased, the entire defined label intervals are iterated over again, initialized

with the current obtained solution. The method terminates when E(S) converges.

The method pipeline is shown in Fig 4.4.
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4.2.3 Graph Construction

The graph Gm is constructed at each iteration m for corresponding subvolume

x × y × Tm. Herein, each voxel in the subvolume is represented by a node in the

graph. Let us assume at an iteration m the set of labels given for col(a) in the cost

volume D be Tm = [qa, qa + 1, ...qa +L-1]. qa hence represents a node in Gm for col(a)

with label q ((x, y) = a, z = q).

To encode the data cost and ensure monotonicity of the target surface, intra-

column arcs are added. For all k ∈ [0, L− 2], we add a weighted arc with D(qa + k)

weight from node qa + k to qa + k + 1 and an arc with +∞ weight in the opposite

direction. We also add a weighted arc with D(qa +L-1) weight from node qa +L-1 to

the terminal node t. Furthermore, the labeling for a given column can either retain its

current labeling or can switch to a label in the interval. Denote the current labeling

for col(a) at the start of iteration m as Sm−1(a). If Sm−1(a) /∈ Tm, we add a label

retaining arc with D(Sm−1(a)) weight from source node s to node qa allowing col(a)

to retain its current label or add an arc with +∞ weight from source node s to node

qa otherwise. This ensures that any finite st-cut shall always cut each column only

once and the arc weights encode the data term of the energy function E(S).

The next task is to incorporate inter column arcs to ensure truncated convex

penalty for surface smoothness. Let col(a) and col(b) be two neighboring columns.

The basic idea is to add arcs between the two columns at a given interval to model

the convex function being used. Such arcs are added by making similar use of discrete

equivalent of second derivatives of the convex function [9] [66]. Using this construction

it is proved in [7] that the total weight of the arcs that are cut between two neighboring

columns equals to a penalty represented by the convex function plus a constant of

approximation.

The last task is to enforce truncation of the convex penalty. As discussed earlier,

at each iteration the previous labeling may be retained or a new label could be chosen
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Figure 4.5: (a) Example graph construction for Case1. Additional arcs added to (a)
for (b)(c) Symmetric Cases, (d) Combination Case. Length of interval (L) =3.

from the current interval. We distinguish four cases for a pair of neighboring columns

col(a) and col(b) as follows:

Base Case: Sm−1(a) ∈ Tm and Sm−1(b) ∈ Tm.

Symmetric Cases: Sm−1(a) /∈ Tm and Sm−1(b) ∈ Tm, Sm−1(a) ∈ Tm and

Sm−1(b) /∈ Tm.

Combination Case: Sm−1(a) /∈ Tm and Sm−1(b) /∈ Tm.

No further arcs are added to the base case. For the symmetric cases we add a

truncation arc with wab(M + f(L)/2) from node qa to qb in both the directions to

the graph of the base case. For the combination case, we add a new node κ to the

graph of the base case. The truncation arcs with weight wab(M + f(L)/2) are added

from node κ to qa and from node κ to qb. An additional truncation arc is added from

source node s to node κ with a weight setting of Vab(Sm−1(a), Sm−1(b)) +wabf(L)/2.

The graph construction for all the cases are shown in Fig 4.5.

At each iteration, the graph is solved by computing a maximum flow which min-

imizes the energy function E(S) approximately. The labeling Sm(a) either retain its

old label Sm−1(a) or changes to a label belonging to Tm. A complete set of iterations is



www.manaraa.com

30

defined as a set of iterations where constructed graphs at each Tm, m = 0, 1, ...Z−2 is

solved. The set of iterations are continued till the energy cannot be further minimized

thereby yielding the final labeling S(·).

4.2.4 Experiment Setting

The data used for the testing consisted of 10 optic nerve head (ONH) OCT volumes

from 10 patients diagnosed with glaucoma, acquired on spectral-domain Cirrus (Carl

Zeiss Meditec, Inc., Dublin CA). Each dataset had dimensions 6mm× 6mm× 2mm

(200×200×1024 voxels). Manual tracings from an independent expert was obtained

from 10 slices, selected randomly (from 10 sections of 20 slices each) in each dataset.

The data term is computed using the cost function of the image. In this study,

for each SD-OCT volume, the cost image is obtained by a linear combination of

a 3-D Sobel filters (3 × 3 × 3) for enhancing the vertical edges around the neural

canal opening (NCO). Another 3-D Sobel (3 × 3 × 3) filter was used to extract the

horizontal boundary information of retinal layers for dark-to-bright transitions along

the vertical direction. Then, a dynamical parameter of readjusting the cost image

contrast can be assessed by computing the mean background intensity-value at the

top small corner regions, in which retinal tissue is usually absent. To this step, the

cost function design is completed. To avoid finding surfaces other than the ILM, a

previous version of the multiresolution graph-theoretic approach [62] was applied for

each SD-OCT volume, and the original input cost images were modified such that

the locations of the surfaces other than the ILM had a very high cost.

For comparison, the graph search algorithm [2] [19] was also used to segment the

same input cost image. Considering to accelerate the computational time of this

method, we down-sampled the input cost image by 4 for each SD-OCT volume first.

We then pre-segmented the ILM in image low resolution domain. After up-sampling

the pre-segmentation result from the low-resolution into the original resolution, the

region of interest (ROI) of the input cost image was defined by a narrow band covering
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the 3-D pre-segmented ILM at the center surface and 40 voxels height at both top

and bottom directions. Then, the graph search algorithm was performed one more

time on the refined cost image, and the final ILM segmentation was achieved.

The proposed method with truncated convex prior was used to segment the input

cost image in the original resolution. For the smoothness constraint we used the

truncated linear metric. The algorithm parameters used in our work were, wab =1.5,

M=20 and L=2.

The segmentation accuracy of both methods were estimated using 1) unsigned

mean surface positioning error (UMSP) given by Equation (4.3) and 2) average sym-

metric symmetric surface distance (ASSD) given by Equation (4.4).

UMSP (Si) =

∑
a∈x×y |Smani (a)− Sautoi (a)|

|Smani |
(4.3)

where Smani (a) and Sautoi (a) is the surface position for the ith surface for column a

given by expert manual tracings and automated segmentation respectively.

ASSD(Si) =

∑
a∈x×y r(S

man
i (a), Sautoi ) +

∑
a∈x×y r(S

auto
i (a), Smani )

|Smani |+ |Sautoi |
(4.4)

where r(x,A) gives the shortest distance between a point x and any point on surface

A. The ASSD measures how close the segmented surface is from the ground truth.

A paired t-test was used to compare the segmentation results. A p-value of 0.05 was

considered significant.

4.2.5 Results

The UMSP error for our proposed method was significantly lower (p < 0.04) from

the graph search method. The ASSD for our proposed method was lower (p < 0.07)

from the graph search method. Results from our proposed method is significantly
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better on the cup slices (for which the algorithm was developed). Since only a few

slices from each dataset contained the central cup region, for which the ground truth

was available; we also calculated the above mentioned errors on only those slices con-

taining the optic cup for each dataset. We found that UMSP error for our proposed

method was significantly lower (p < 0.03) from the graph search method. The ASSD

for our proposed method was significantly lower (p < 0.04) from the graph search

method. The percentage improvement in the mean errors of our proposed method

over the graph search method was also calculated and it demonstrates a significant

improvement. The results of both the methods are summarized in Table 4.1. Illus-

tration of the results are shown in Fig 4.6 and Fig 4.7.

Table 4.1: Results from truncated convex method and graph search method. The
UMSP and UASSD errors, are expressed as mean ± standard deviation in µm.

All slices Cup slices
UMSP ASSD UMSP ASSD

Truncated Convex 6.35 ± 1.35 3.40 ± 0.17 11.56 ± 4.97 4.37 ± 0.82
Graph search 7.69 ± 3.23 3.86 ± 0.54 15.79 ± 10.95 6.05 ± 3.49

% Improvement 17.17 11.92 26.78 27.7

4.3 Multiple Surface Segmentation Using
Truncated Convex Priors (Aim 1.2)

Multiple surface segmentation with mutual interaction between surface pairs is a

challenging task in medical image analysis. The process is time intensive for large vol-

umetric data. The problem becomes further complicated with the presence of sharp

discontinuities in a surface topology or abrupt change in surface separation between

a pair of surfaces or the presence of both as can be seen in Fig 3.1, especially in

datasets with presence of pathology. As discussed earlier, traditional graph search

methods [2] [9] may over smooth the target surfaces and may not be able to segment
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Figure 4.6: Examples of comparison between the manual tracings from an expert in-
dependent observer (yellow), the segmentation result obtained using truncated convex
method (red) and Original Graph Search (green), respectively.



www.manaraa.com

34

Figure 4.7: Segmentation result obtained for slices from different OCT volumes using
the proposed method(red) and Original Graph Search (green). The manual tracings
were not available for these slices.
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the target surfaces with sufficient accuracy for such cases. To address this challenge,

an automated method was developed to segment multiple surfaces simultaneously us-

ing truncated convex priors to handle this problem by building upon the framework

for single surface segmentation using truncated convex priors. The method is also

capable of enforcing a minimum separation between a pair of surfaces. Furthermore,

it is sufficiently fast to segment large volumetric data in original resolution compared

to the traditional graph search methods. The proposed method was validated on

simultaneous intraretinal layer segmentation of optical coherence tomography images

of normal eye and eyes effected by severe drusen due to age related macular degener-

ation.

4.3.1 Method Design

For ease of understanding, we define the problem of multiple surface segmenta-

tion with truncated convex priors in a similar manner as described in Section 4.2.1.

Consider a volumetric image I(x, y, z) of size X × Y × Z. A surface is defined as

a function S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and

S(x, y) ∈ z = {0, 1, ...Z − 1}. Each (x, y)-pair corresponds to a column of voxels

{(I(x, y, z)|z = 0, 1, . . . , Z − 1}, denoted by col(x, y). We use a and b to denote two

neighboring (x, y)-pairs in the image domain x × y and Ns to denote the neighbor-

hood setting of image domain. The function S(a) can be viewed as labeling for a

with the label set z (S(a) ∈ z). For simultaneously segmenting λ(λ ≥ 2) distinct

but interrelated surfaces, the goal of the problem is to seek the “best” surfaces Si(a),

where i = 1, 2, ...λ in I with minimum separation di,i+1 where i = 1, 2, ...λ−1 between

each adjacent pair of surfaces Si and Si+1.
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Energy Function - The problem is transformed into an energy minimization

problem. The energy function E(S) takes the following form :

E(S) =
λ∑
i=1

(
∑
a∈x×y

Di(Si(a)) +
∑

(a,b)∈Ns

Vab(Si(a), Si(b)))

+
λ−1∑
i=1

∑
a∈x×y

Ha(Si(a), Si+1(a))

(4.5)

The data cost term
∑

a∈x×yDi(Si(a)) measures the total cost of all voxels on a surface

Si, while the surface smoothness term
∑

(a,b)∈Ns Vab(Si(a), Si(b)) as shown in Eqn 4.2,

models the surface smoothness term as a truncated convex function as described in

Section 4.2.1. The surface separation term Ha(Si(a), Si+1(a)) incorporates a trun-

cated convex penalty for the separation between two adjacent surfaces, and ensures

a minimum separation between them, which takes the following form :

Ha(Si(a), Si+1(a)) =


∞, if (Si+1(a)− Si(a)) < di,i+1,

wa min(f(Si+1(a)− Si(a)),Mi,i+1), otherwise

(4.6)

where f(.) is a convex function, Mi,i+1 > 0 is the truncation factor, and wa ≥ 0.

4.3.2 Method Overview

The method is developed by extending the single surface segmentation with trun-

cated convex prior method. Therefore, similarly the proposed method is iterative in

nature. The pipeline for our method is shown in Fig. 4.8. At each iteration, it searches

a small subset of the solution space defined by a label interval. A constant interval

length L is defined to determine the subset of consecutive labels to be considered for

all λ surfaces at each iteration.

An interval of consecutive labels for surface Si is defined as Ti ⊂ z where z =
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Figure 4.8: Pipeline for our method. N = Z − 2−
∑λ−1

i=1 d(i,i+1).

{0, 1, ...Z−1}. Denote Ti,m shown in Eqn.(4.7) as the label interval for Si at iteration

m, where m = 0, 1, ...Z − 2 −
∑λ−1

i=1 d(i,i+1). For each pair of adjacent surfaces Si

and Si+1, interval Ti+1,m is displaced by di,i+1 from Ti,m to ensure the minimum

separation constraint between Si and Si+1. An example of interval construction is

shown in Fig 4.9.

Ti,m = {l | m+
i∑

j=1

d(j−1,j) ≤ l ≤ min(m+
i∑

j=1

d(j−1,j) + (L− 1), Z − 1)} (4.7)

The search problem is reduced to compute a minimum st-cut in a properly con-

structed graph in the subvolume generated at a given interval. The key for the graph

construction is to encode the truncated convex priors. For each surface Si, a subgraph

Gi,m (where m is the index for iteration and i is the index of the sought surface) is

then constructed using the technique for the single surface detection as discussed in

Section 4.9. This incorporates all the intra-column arcs for surface monotonicity for

data cost volume Di,m (for searching Si at iteration m) and inter-column arcs for

surface smoothness (truncated convex penalty) to search a single surface Si. The

graph Gm for the simultaneous search of all λ surfaces at the iteration m consists of
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Di

Di+1

Ti,m

Ti+1,m

Ti,m+1

Ti+1,m+1

Figure 4.9: Example of interval construction for 2-D data cost slice Di for surface Si
and Di+1 for adjacent surface Si+1 with three corresponding columns and Z=4. L =2
and minimum separation constraint di,i+1 = 1.

the union of those λ subgraphs Gi,m’s. In addition, we add inter-surface arcs between

the corresponding columns (columns for the same (x,y) pair) of graph nodes in the

data cost volumes Di,m and Di+1,m in the input image I. The inter-surface arcs in-

corporate the truncated convex penalty for the point-wise surface distance changes

between two surfaces. Similar to the single surface segmentation method, four cases

are distinguished on whether the segmented surfaces from previous iteration are in

the current search space for the same pair of columns of two adjoining surfaces. In all

cases the convex penalty is enforced by adding arcs each with a weight of the second

derivative of the convex function f(.). The truncation and minimum separation con-

straints are incorporated by additional arcs from case to case. The graph Gm is then

iteratively solved by computing a maximum flow which minimizes the energy function

E(S) (Eqn. (4.5)). The method terminates while E(S) converges, thus resulting in

the final labeling for λ target surfaces.
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4.3.3 Graph Construction

In iteration m, we search for each surface Si in the sub-volume x×y×Ti,m of I. Let

us assume at iteration m, the set of labels given by Eq.(4.7) for corresponding columns

col(a, i)(resp., col(a, i+1)) in Di,m(resp., Di+1,m) is Ti,m = [qa,i, qa,i+1, . . . qa,i+L−1]

(resp., Ti+1,m = [qa,i+1, qa,i+1 +1, . . . qa,i+1 +L−1]), i.e., Ti,m(resp., Ti+1,m) includes all

possible surface positions that Si(resp., Si+1) can change into at iteration m. For ease

of notation we refer each node in the graph with its corresponding label. Denote the

initial surface position of Si on column col(a) at the beginning of the iteration m as

Si,m−1(a). At each iteration m, a labeling can either retain its current label Si,m−1(a)

or can be changed to a label belonging to the interval Ti,m. A label retaining arc as

described in Section 4.2.1, exists from node s to node qa,i with weight Di(Si,m−1(a))

when Si,m−1(a) /∈ Ti,m.

The task now is to add inter-surface arcs between corresponding columns of sub-

graphs G′i,ms to enforce the minimum separation and the truncated convex penalty

for surface separation between a pair of adjacent surfaces. The convex penalty is

enforced by adding arcs in a similar manner as the single surface detection method

with following difference. For all k = k′ except when k = k′ = 0, we put in an arc

of weight +∞ from node qa,i + k to qa,i+1 + k′. Therefore, no st-cut shall be possible

when Si+1,m(a)−Si,m(a) < di,i+1 within the interval at iteration m, thus ensuring the

minimum separation constraints are not violated within the interval. An example is

shown in Fig. 4.10(a).

The final task is to add the truncation arcs to truncate the convex penalty while

ensuring the minimum separation constraint is preserved. As discussed earlier, four

cases are distinguished for a pair of corresponding columns as follows:

Base Case: Si,m−1(a) ∈ Ti,m and Si+1,m−1(a) ∈ Ti+1,m.

Symmetric Cases: Si,m−1(a) /∈ Ti,m and Si+1,m−1(a) ∈ Ti+1,m, Si,m−1(a) ∈ Ti,m

and Si+1,m−1(a) /∈ Ti+1,m.
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Figure 4.10: (a)An example of graph construction for inter-surface arcs for base case.
Additional arcs added to (a) for (b)(c) Symmetric cases, (d) combination case. Length
of interval L = 3

Combination Case: Si,m−1(a) /∈ Ti,m and Si+1,m−1(a) /∈ Ti+1,m.

For the first symmetric case when Si,m−1(a) /∈ Ti,m and Si+1,m−1(a) ∈ Ti+1,m

(Case 1), we additionally introduce to the construction shown in Fig. 4.10(a); a

truncation arc from node qa,i+1 to node qa,i whose weight is waM + wa
2
f(L), if

(qa,i+1 − Si,m−1(a)) ≥ di,i+1 and is +∞ otherwise, to encode the truncated penalty

and the minimum separation constraint. Note that any finite st-cut including the

label retaining arc must also include the truncation arc (Fig. 4.10(b)), hence enforc-

ing the truncated convex penalty with possible overestimation. For the case when

Si,m−1(a) ∈ Ti,m and Si+1,m−1(a) /∈ Ti+1,m (Case 2), we symmetrically add arcs as

discussed for Case 1 (Fig. 4.10(c)).

For the combination case we add the arcs of the symmetric cases to the graph of

base case while introducing a new node κ. An additional truncation arc is added from

source node s to κ with a weight of Ha(Si,m−1(a), Si+1,m−1(a)) ( Fig. 4.10(d)). Note

that any finite st-cut including both the label retaining arcs ((s, qa,i), (s, qa,i+1)), must

also include the truncation arc (s, κ), hence enforcing the truncated convex penalty.

This completes the graph construction.
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At each iteration, the graph is solved by computing a maximum flow which min-

imizes the energy function approximately. The set of iterations are continued till the

energy cannot be further minimized thereby yielding the final labeling Si(·).

4.3.4 Experiment Setting

The experiment compares segmentation accuracy of the proposed method (trun-

cated convex prior) and the optimal surface detection method using convex prior

without truncation (OSDC) [9]. 20 SD-OCT scans of normal eyes (Type I), 20 SD-

OCT scans of eyes with AMD (Type II) and their respective expert manual tracings

were obtained from the publicly available repository of datasets Ref. [68]. The 3-D

volumes (1000× 100× 512 voxels with voxel size 6.54× 67× 3.23 µm3) for our study

were randomly selected from the repository. Segmenting the surfaces simultaneously

using OSDC [9] in original resolution is not efficient enough for large data volumes.

To make fair comparisons, we first downsample the image by a factor of four in the

x direction to reduce the computation time. The datasets were segmented in both

their original resolution and down-sampled version by our method to demonstrate the

performance and capacity of our method for large clinical datasets. For cases where

segmentation was done in the down-sampled version, the resulting segmentation was

up-sampled to original resolution for comparison purposes.

The three surfaces simultaneously segmented in this study are S1-Internal Limit-

ing Membrane (ILM), S2-inner aspect of retinal pigment epithelium drusen complex

(IRPEDC), S3-outer aspect of Bruch’s membrane (OBM) as shown in Fig. 3.1. Com-

parison was done by calculating the unsigned mean surface positioning errors (UMSP)

as described in Equation (4.3) as absolute distances between the computed surfaces

and the expert manual tracings in each column of the image. Statistical significance

of observed differences was determined by paired Student t-tests for which p value of

0.05 were considered significant.

The data cost volumes (data cost term) were generated (computed) as follows.
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First, a 11× 11× 11 Gaussian filter with a standard deviation of 11 was applied. To

detect S1 and S3, a 3-D Sobel filter (3× 3× 3) emphasizing the vertical edges for the

dark to bright and bright to dark transitions respectively were applied. To detect S2,

we apply the following operations to each slice of the volume. Edges are extracted

using a high pass filter; image is normalized to range from 0 to 1; a binary mask

is generated for the region containing S2 by thresholding of 0.5 and finally mask is

applied to the data cost volume for S1. Parameters are reported for downsampled

version of the datasets and are summarized in Table 4.2.

Table 4.2: Parameters used in the experiment. Mx and My are truncation factors in
x and y directions, M is the truncation factor for the surface separation term of a
surface pair, d is the minimum separation between a surface pair. TC - Truncated
Convex.

TC OSDC TC
Surface Dataset Mx My Surface pair d M d

S1 Type I 30 5 S1-S2 30 15 30
S2 Type I 30 5 S2-S3 3 3 3
S3 Type I 10 2
S1 Type II 30 5 S1-S2 20 10 20
S2 Type II 10 5 S2-S3 3 5 3
S3 Type II 5 2

For both the methods, we use a linear convex function f(x) = |x|. For our method,

an interval length L = 2 was used and surface S1 (resp., S2, S3) was initialized as

0 (resp., d1,2, d1,2+d2,3). The parameters and the weight coefficients (wab, wa) were

experimentally determined by testing on a similar group of datasets (with the same

data size) obtained from the same repository [68] for best results.
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(b)(a) (c)

Figure 4.11: Top two rows show image slices of Type II and bottom row shows image
slice of Type I. Yellow - ILM, Red - IRPEDC and Blue - OBM. (a)Expert manual
tracing, segmentation using (b)our method, (c)OSDC method.

4.3.5 Results

Illustrative results of our proposed method and the OSDC for downsampled data

can be seen in Fig. 4.11. Quantitative comparison between our method and OSDC

is summarized in Table 4.3 and Table 4.4. For the downsampled version of the

datasets, our method produced significantly lower UMSP for surfaces S1 (p < 0.05),

S2 (p < 0.03) and S3 (p < 0.002) in Type II datasets. In type I datasets, our

method significantly lowered UMSP for surface S3 (p < 0.05). Comparisons were

also made between the segmentations using our method in original resolution and

OSDC in downsampled version. Our method significantly improved the UMSP for

S1 (p < 0.001), S2 (p < 0.006) and S3 (p < 0.001) in both types of the datasets.

For the downsampled version of the datasets, our method with average computa-

tion time of 539 seconds is much faster than OSDC method with average computation

time of 3671 seconds. Average computation time using our method was 3394 seconds

for datasets in original resolution.
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Table 4.3: Unsigned mean surface positioning errors (UMSP) (mean ± standard
deviation)µm for downsampled version of data. Obsv - Expert manual tracing, TC
-Truncated Convex, OSDC - Optimal Surface Detection with Convex priors.

Data in downsampled resolution
Normal eye (Type I) Eye with AMD (Type II)

TC OSDC TC OSDC
Surface vs. Obsv vs. Obsv vs. Obsv vs. Obsv

S1 3.62 ± 0.23 3.67 ± 0.30 3.95 ± 0.72 4.24 ± 0.56
S2 5.56 ± 2.13 5.77 ± 2.41 6.86 ± 2.04 8.06 ± 2.79
S3 3.69 ± 0.70 3.98 ± 0.60 4.56 ± 1.40 11.65 ± 8.72

Overall 4.29 ± 1.02 4.47 ± 1.10 5.12 ±1.39 7.98 ± 4.02

Table 4.4: Unsigned mean surface positioning errors (UMSP) (mean ± standard
deviation)µm for data in original resolution. Obsv - Expert manual tracing, TC
-Truncated Convex.

Data in original resolution
Type I Type II

TC TC
Surface vs. Obsv vs. Obsv

S1 1.99 ± 0.36 2.07 ± 0.38
S2 4.72 ± 1.68 6.49 ± 2.46
S3 2.95 ± 0.41 3.64 ± 0.62

Overall 3.32 ± 0.82 4.06 ± 1.15

4.4 Segmentation of Surfaces in SD-OCT
Volumes with Retinal Pigment Epithelial

Detachment (PED) Using Truncated
Convex Priors(Aim 1.3)

Retinal pigment epithelial detachment (PED) is a prominent feature of age-related

macular degeneration (AMD), which is the leading cause of severe vision loss in people

over age 60 [61] [69]. Initial studies have demonstrated that PEDs may evolve over

time and patients diagnosed with PED associated with AMD frequently have co-

existing choroidal neovascularization (CNV), or have a higher risk of developing CNV,

which can eventually cause severe visual acuity loss [61] [70]. In SD-OCT images, the
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Retinal Pigment Epithelium (RPE) appears as a bright layer, and PED appears as

a localized, relatively pronounced dome-shaped elevation of the RPE layer, as shown

in Fig 3.2. Automated segmentation of Outer Retinal Pigment Epithelium (ORPE)

and Inner Choroid (IC) as shown in Fig 3.2, are of significance for the identification

of PED as the segmentation information, the morphological and optical features of

each individual layer and their difference from normal ones can be analyzed, which

can improve the understanding of the disease progression and diagnosis in a clinical

setting.

Tradional graph search approaches usually experience difficulty when additional

structures exist because of pathology such as retinal pigment epithelial detachment

(PED) as discussed in Section 3.1.1. In these cases, layer segmentation becomes

challenging due to the following two reasons. First, the surface terrains may have

sharp changes in smoothness. Secondly, there may be abrupt changes in the surface

distance between a pair of adjacent surfaces. Therefore, the prior knowledge about

morphological and optical features used for normal retinal image segmentation may

not be valid. Several methods have been reported for segmentation of OCT images

with PED. Penha et al. [71] utilized the software on the commercially available Cirrus

SD-OCT in conjunction with proposed method of Gregori et al. [72] to detect the RPE

and subsequently the PED. Ding et al. [73] detected the top and bottom surfaces of

the retina as constraints for subretinal and sub-RPE fluid detection. Quellec et al. [74]

segmented 11 surfaces in OCT images with fluid-associated abnormalities. Sun et al.

[75] proposed an automated framework to segment PED by effectively combining the

multi-scale graph search, shape-constrained graph cut and mathematical morphology

algorithm.

However, for all the works reported in [71] [73] [74], no evaluation of layer segmen-

tation accuracy was given. Shi et al. [76] segmented 11 retinal surfaces in OCT images

with PED by utilizing the multi-resolution graph search method [62]. However, due
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to the usage of loose constraints, the RPE floor is corrected as a post processing step

at places where it goes below the estimated normal RPE floor. Therefore the method

may have a problem in more severe cases to define the region of interest required for

the multi-resolution approach. In this aim, we simultaneously segment three PED

related surfaces: Internal Limiting Membrane (ILM), Outer Retinal Pigment Epithe-

lium (ORPE) and Inner Choroid (IC) in SD-OCT images with presence of PED using

the developed method for multiple surface segmentation with truncated convex priors.

4.4.1 Experiment Setting

The experiment compares segmentation accuracy of the truncated convex method

(TC) [77], graph search method with hard constraints (GSH) [2] and graph search

with convex constraints without truncation (GSC) [9] on SD-OCT volumes with pres-

ence of PED. The study inlcuded 22 SD-OCT (Heidelberg Spectralis) volume cubes

from 22 eyes of 22 subjects (one eye per patient) with the presence of submacular

vascularized/fibrovascular PED. Each OCT volume scan consisted of a macular cube

of 1024 × 37 × 496 voxels with an average physical size of 5.76 × 4.44 × 1.92mm3.

The three surfaces segmented in this study are S1 - ILM, S2 - ORPE and S3 - IC

as shown in Fig 3.2. Comparison was done by calculating the unsigned mean sur-

face positioning errors (UMSP) as described in Equation (4.3) as absolute distances

between the computed surfaces and the expert manual tracings in each column of

the image. Statistical significance of observed differences was determined by paired

Student t-tests for which p value of 0.05 were considered significant.

The data cost volumes were generated as follows. First, a 11× 11× 11 Gaussian

filter with a standard deviation of 11 was applied. To detect S1 and S3, a 3-D Sobel

filter (3 × 3 × 3) emphasizing the vertical edges for the dark to bright and bright

to dark transitions respectively were applied. To detect S2, we apply the following

operations to each slice of the volume. Edges are extracted using a high pass filter;

image is normalized to range from 0 to 1; a binary mask is generated for the region
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containing S2 by thresholding of 0.5 and finally mask is applied to the data cost

volume for S1. As a pre-processing step, the surface S2 for the first B-scan of each

SD-OCT volume is segmented using the TC method. The segmented surface is then

used to flatten [62] the entire SD-OCT volume. The rationale behind the same is that

in the given data, the detachment is not present in the first few B-scans and therefore,

the segmentation can be used as a reference for image flattening. The methods in this

study were applied to the flattened cost volumes and the resultant segmentation was

mapped back to the original unflattend image. The parameters used in this study are

summarized in Table 4.5 .

Table 4.5: Parameters used in the experiment. ∆x and ∆y are the hard constraints
used in x and y directions, Mx and My are truncation factors in x and y directions,
M is the truncation factor for the surface separation term of a surface pair, d is the
minimum separation between a surface pair.

GSH TC GSH GSC TC
Surface ∆x ∆y Mx My Surface pair d d M d

S1 2 2 30 5 S1-S2 45 45 8 45
S2 3 2 30 5 S2-S3 0 0 3 0
S3 1 1 15 15

For the TC and GSC method, we used a a linear convex function f(x) = |x|. For

the TC method, an interval length L = 2 was used and surface S1 (resp., S2, S3) was

initialized as 0 (resp., d1,2, d1,2+d2,3). The parameters and weight co-efficients used

in each of the methods were experimentally determined by testing the data with a

variety of different parameters to achieve the best results with respect to each method.
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4.4.2 Results

Quantitative comparison between the TC, GSH and GSC methods are summarized

in Table 4.6. The TC method significantly lowered the UMSP error for surfaces S1

(p < 0.05), S2 (p < 0.01) and S3 (p < 0.001) compared to the GSH and GSC method.

The results also show the substantial improvement in segmentation accuracy of surface

S3 which is generally the most difficult to segment. The results also show that the

GSH method is more accurate than GSC method for surface S2, since the convex

penalty between surfaces S2 and S3 is overpenalizing the surface distance for the

GSC method. However, this is difficult to control since the minimum separation

between those two surface is 0.

Table 4.6: Unsigned mean surface positioning errors (UMSP) (mean ± standard
deviation)µm. Obsv - Expert manual tracing.

Surface GSH vs. Obsv GSC vs. Obsv TC vs. Obsv

S1 4.02 ± 0.96 3.48 ± 0.77 3.28 ± 0.69
S2 11.02 ± 3.25 8.93 ± 2.39 7.34 ± 1.78
S3 13.69 ± 5.49 15.24 ± 7.31 8.16 ± 2.59

Illustrative results are presented in Fig. 4.12. Herein, all rows in a given col-

umn shows the same B-scan from a SD-OCT volume with PED. The first row shows

the expert mannual tracings, the second, third and fourth row shows the automated

segmentation results for the GSH, GSC and TC methods. The illustrative results

demonstrates the qualitative superior performance of the TC method. Fig. 4.12 also

demonstrates that the GSH and GSC method struggle to accurately segment surfaces

S2 and S3. This is because with the hard constraints the GSH method over smoothes

the steep changes in the surface profiles while lack of regularization (even though con-

strained) causes surface S3 to become irregular as compared to the manual tracing
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for surface S3. It can also be observed that the GSC method provies a reasonable seg-

mentation for surface S2 but the over penalizes the surface distance between surfaces

S2 and S3, resulting in a mutual attraction between the surfaces. The TC method, on

the other hand, exploits the truncation property and imposes a convex penalty where

the surface separation is small between surfaces S2 and S3 and truncates it when the

separation is bigger, thus providing a better modelling of the surface profiles which

is reflected in the results shown.

4.5 Discussion

The developed truncated convex method works better than the graph search

method with hard constraints and the graph search method with convex constraints

because the smoothness constraint can incorporate the traditional constraints, as well

as, ensures that there is no over-penalizing the steep difference in labeling using the

truncation factor. The results shown in Section 4.2.5, demonstrates that the trun-

cated convex method allows for the sharp change in the surface smoothness of the

ILM surface while the graph search method with hard constraints oversmoothes the

surface in the cup region. Consequently, increasing the hard constraint to allow for

capturing of the steep change in the surface profile shall result in an uncosntrained

surface segmentation which shall also be susceptible to noise. The results shown in

Section 4.3.5, show that the truncated convex method is more accurate for multiple

surface segmentation in the presence of pathology and results in superior segmenta-

tion compared to graph search with convex constraints which tends to over penalize

the steep change in surface smoothness and surface separation. The applicability of

the approach can also be seen from the results shown in Section 4.4.2, which clearly

demonstrate that the truncated convex method results in better segmentation ac-

curacy compared to the GSH and GSC methods. In addition, the approach does

not require multiple-resolution processing and is much faster in segmenting SD-OCT

volumes in original resolution. Infact, for the segmentation of surfaces in SD-OCT
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Figure 4.12: Each image in a given column shows the same B-scan from a SD-OCT
volume with PED. Yellow - ILM, Red - ORPE and Blue - IC.
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volumes with presence of PED, the ORPE surface can be further constrained by also

segmenting the inner aspect of the retinal pigment epithelium and imposing a convex

penalty between the two. This shall cause for a mutual attraction between the two

surfaces and therefore, pull the ORPE surface towards more accurate segmentation.

However, a few limitations are noticed in this work. First, the method does not

guarantee a globally optimal solution since a truncated convex function is submodular

in nature and hence is optimized using an approximate algorithm. Second, the method

introduces two extra parameters (truncation factor and interval length) compared

to the graph search based methods. Thus, with the increase in parameters, the

tuning of these parameters become more complex compared to graph search based

methods. Therefore, more advanced automated techniques may be used for training

of the parameters. Third, by introducing the truncation, in theory, thus results in

unconstraining the surface profile after the truncation factor limit, which may cause

complications in certain applications. However, most of the graph search methods,

rely heavily on generation of a good enough data cost term and such a data cost term

shall partially limit the surface from becoming unconstrained.

4.6 Conclusion

The focus of this chapter was on the development of a novel mutilpe surface

segmentation method which segments surface with a presence of steep change in

surface smoothness and/or sharp changes in surface distance between two surfaces, as

in the cases of SD-OCT images with presence of pathology. In this work, the method

was developed, applied to various such segmentation problems and demonstrated

the superior performance of the developed method in terms of both segmentation

accuracy and running time, compared to graph search method with hard constraints

and convex constraints. The results also demonstrate that the developed method is

more efficient and capable of segmenting large OCT volumes in original resolution

without using a multiple resolution approach. The results clearly show the improved
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performance of the proposed approach and applicability in future studies and clinical

applications.
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CHAPTER 5
OPTIMAL MULTIPLE SURFACE SEGMENTATION WITH CONVEX

PRIORS IN IRREGULARLY SAMPLED SPACE (AIM 2)

5.1 Introduction

The objective of Aim 2 is the development of an optimal graph based mutiple

surface segmentation method with convex priors in irregularly sampled space. In

this aim the extension of the framework presented in Ref. [65] to incorporate convex

priors to achieve subvoxel accuracy which requires to model the surface smoothness

constraints in the irregularly sampled space. The proposed method is a generalization

of the graph based optimal surface segmentation with convex priors in the regularly

sampled space (equidistant spacing between voxel centers). Consequently, the graph

constructed in the regularly sampled space forms a special case in the irregularly

sampled space framework.

The proposed method shall have a potential to handle various interesting problems

and is evaluated in the following aspects. First, the method can be used to achieve

subvoxel accuracy while using convex constraints, thus providing flexibility in model-

ing the target surfaces to achieve higher accuracy. Second, the method may provide

for an avenue to perform super resolution segmentation with sufficient accuracy, i.e

achieve adequate segmentation accuracy by operating in the downsampled version of

data as compared to segmenting the data in the original resolution, thus providing

a prospective alternative for more cost effective imaging with lower resolution im-

age acquisition hardware. Last, typically the design of the region of interest in the

multi-resolution graph search method [62] defines a region of interest with a constant

length for each column (like a uniformly sized band based on the pre-segmentation

result). The proposed method shall provide for a framework to allow segmentation

of surfaces with non-uniformly sized region of interests and region of interest which

may comprise of union of multiple disjoint region of interests for the same target

segmentation. Such a flexibility, may allow fast segmentation of the target surfaces
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in the original resolution itself and hence could be used as a potential tool by the

multi-resolution graph search method.

The segmentation problem is transformed into an energy minimization problem

[2] [67] [4]. A graph is then constructed, wherein the graph nodes correspond to the

center of evenly distributed voxels (equidistant spacing between adjoining nodes).

Edges are added between the nodes in the graph to correctly encode the different

terms in the energy function. The energy function can then be minimized using a

minimum s-t cut [2] [8]. The resultant minimum s-t cut corresponds to the surface

position of the target surface in the voxel grid. The method requires appropriate

encoding of the following three types of energy terms as described in Section 2.1

into the graph construction. A data term (also commonly known as the data cost

term) which measures the inverse likelihood of all voxels on a surface, a surface

smoothness term (surface smoothness constraint) which specifies the regularity of the

target surfaces and finally, a surface separation term (surface separation constraint)

which governs the feasible distance between two adjacent surfaces.

Volumetric images are obtained by discretizing the continuous intensity function

uniformly sampled by sensors, resulting in partial volume effects [63] [64]. Partial

volume effects are inherent in images as voxels ’combine’ partial information from

various features (such as tissues) of the imaged object. The spatial resolution in

images is limited by the detector/sensor design and by the reconstruction process,

which results in 3-D image blurring introduced by the finite spatial resolution of

the imaging sysytem [78]. Mathematically, the finite resolution effect is described

by a 3-D convolution operation, where the image is formed by the convolution of

the actual source with the 3-D point spread function of the imaging system, which

causes spillover between regions. The signal intensity in each voxel is the mean

of signal intensities of the underlying tissues included in that voxel. Even if the

imaging system has perfect spatial resolution, there is still some partial volume effect
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because of image sampling [78]. The partial volume effects can be ignored if the

intensity or the gradient is measured at the center of each voxel to assign the costs

and the graph is created with equidistant nodes. However, since volumetric data is

typically represented as an orthogonal matrix of intensities, the surface segmentation

cannot achieve a precision greater than a single unit voxel, i.e. the distance between

two adjoining nodes in the graph space. Accuracy higher than a single unit voxel

(subvoxel accuracy) can be attained by exploiting partial volume effects in the image

volumes [65] [79] which leads to non-equidistant spacing between the adjoining graph

nodes resulting in an irregularly sampled space.

The ignored partial volume information can be utilized by computing a displace-

ment field directly from the volumetric data [65] to identify the subvoxel accurate

location of the centers within each voxel, thus requiring a generalized construction of

the graph with non-equidistant spacing between orthogonal adjoining nodes (irregu-

larly sampled space). Increased subvoxel segmentation accuracy attained by exploit-

ing the partial volume effects has the potential for better diagnosis and treatment of

disease. Or, instead, equivalent segmentation accuracy with lower resolution image

acquisition hardware allows for more cost-effective imaging.

The optimal surface segmentation technique employing the different types of

smoothness constraints as discussed above is not capable of segmenting surfaces with

subvoxel accuracy in a volume which requires segmentation in a grid comprising of

non uniformly sampled voxels where the spacing between the orthogonally adjoining

nodes is non-equidistant.

To address this problem, a subvoxel accurate graph search method [65] was devel-

oped to simultaneously segment multiple surfaces in a volumetric image by exploiting

the additional partial volume information in the voxels. A displacement field is com-

puted from the original volumetric data. The method first creates the graph using the

conventional optimal surface segmentation method [2], then deforms it using a dis-
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(a) (b)

Figure 5.1: Example of a 3×3 voxel grid to demonstrate subvoxel accuracy. Each
voxel is represented by a red node in the graph space. (a)Graph nodes with equidis-
tant spacing between them. True subvoxel accurate surface is shown in green. The
segmented surface using optimal surface segmentation method with hard constraints
is shown in yellow. (b) The displacement field derived from the grid is applied to
the central nodes displacing the centers to exploit the information from the partial
volume effect shown by brown arrows. The resultant segmentation with the subvoxel
accurate graph search is shown in blue.

placement field and finally adjusts the inter-column edges and inter-surface edges to

incorporate the modification of these constraints. Specifically, such a deformation re-

sults in non-equidistant spacing between the adjoining nodes which can be considered

equivalent to a generalized case of a cube volume formed by non-uniform sampling

along the z dimension for the purposes of 3-D surface segmentation. The method

demonstrated achievement of subvoxel accuracy compared to the traditionally used

optimal surface segmentation method [2]. An example is shown in Fig. 5.1. How-

ever, the method employs hard surface smoothness which does not allow flexibility in

constraining surfaces. Specifically, our approach was previously not capable of incor-

porating a convex surface smoothness constraint in the graph with non-equidistant

spacing between adjoining nodes.

The main novelty of this work is is extension of the framework presented in

Ref. [65] to incorporate convex surface smoothness constraints for multiple surface

segmentation in irregularly sampled space. The proposed method is a generaliza-

tion of the graph based optimal surface segmentation with convex priors [9] in the



www.manaraa.com

57

regularly sampled space. Consequently, the graph constructed in the regularly sam-

pled space forms a special case in the irregularly sampled space framework where the

spacing between the adjoining nodes is set to be a constant (equidistant). Usage of a

convex prior allows for incorporation of many different prior information in the graph

framework as discussed previously while attaining subvoxel accuracy. Unlike the sub-

voxel accurate graph search method [65], the proposed method does not require a two

step process to create the graph by the conventional method and then readjust the

edges, but instead provides a one step function to add edges between nodes from two

neighboring columns to incorporate the convex prior. The method provides the glob-

ally optimal solution by directly solving the problem in the irregularly sampled space

which fundamentally distinguishes the approach from the local adjustments made to

the segmentation in the regularly sampled space as reported in [79].

In the following sections, explaination of the formulation for the optimal surface

segmentation method in the regularly sampled space, formulation and description

of the novel graph construction to incorporate the convex smoothness constraints in

the irregularly sampled space is presented. Next, the evaluation is performed on the

spectral domain optical coherence tomography (SD-OCT) volumes of the retina and

intravascular multi-frame ultrasound (IVUS) image datasets for validation and ap-

plicability of the method to demonstrate subvoxel and super resolution segmentation

accuracy compared to optimal surface segmentation method with convex priors in

regularly sampled space [9].

5.2 Optimal Multiple Surface Segmentation
with Convex Priors in Irregularly Sampled

Space (Aim 2.1)

5.2.1 Problem Formulation and Energy Function

The problem formulation for the widely used optimal surface segmentation meth-

ods [2] [7] [9] is described as follows. Consider a volume I(x, y, z) of size X × Y ×Z.
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A surface is defined as a function S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y

={0, 1, ...Y − 1} and S(x, y) ∈ z = {0, 1, ...Z − 1}. It is worth noting that the cen-

ter of voxels are uniformly sampled. Each (x, y)-pair corresponds to a voxel column

{(I(x, y, z)|z = 0, 1, . . . , Z−1}. We use a and b to denote two columns corresponding

to two neighbouring (x, y)-pairs in the domain x × y and Ns to denote the neigh-

bourhood setting of image domain. The function S(a) can be viewed as labeling for a

with the label set z (S(a) ∈ z). For simultaneously segmenting λ(λ ≥ 2) distinct but

interrelated surfaces, the goal of the problem is to seek the globally optimal surfaces

Si(a), where i = 1, 2, ...λ in I with minimum separation dj,j+1 where j = 1, 2, ...λ− 1

between each adjacent pair of surfaces Sj and Sj+1.

The problem is transformed into an energy minimization problem. The energy

function E(S) takes the following form as shown in Eqn. (5.1):

E(S) =
λ∑
i=1

(
∑
a∈x×y

Di(Si(a)) +
∑

(a,b)∈Ns

Vab(Si(a), Si(b)))

+
λ−1∑
i=1

∑
a∈x×y

Ha(Si+1(a), Si(a))

(5.1)

The data cost term
∑

a∈x×yDi(Si(a)) measures the total cost of all voxels on

a surface Si. The surface smoothness term
∑

(a,b)∈Ns Vab(Si(a), Si(b)) constrains the

connectivity of a surface in 3-D and regularizes the surface. Intuitively, this defines

how rigid the surface is. The surface separation term Ha(Si(a), Si+1(a)) constrains

the distance of surface Si to Si+1. The energy function is appropriately encoded in

a graph. A minimum s-t cut is then computed on the graph to get the solutions for

the target surfaces Si’s.

Typically graph construction is done with equidistant spacing between the adjoin-

ing nodes (regularly sampled space). The main novelty of this work is to allow for

optimal surface segmentation in the irregularly sampled space with convex surface
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smoothness constraints by allowing non-equidistant spacing between the nodes.

We formulate the multiple surface segmentation problem in a similar manner for

the irregularly sampled space. Consider a volume Ĩ(x, y, z̃) where x ∈ x = {0, 1, ...X−

1}, y ∈ y ={0, 1, ...Y − 1} and z̃ ∈ R. Each (x, y)-pair corresponds to a column

{(Ĩ(x, y, z̃)|z̃ ∈ R, denoted by col(x, y). Assume each col(x, y) has exactly Z elements

obtained by sampling strictly in the increasing order along the z̃ direction, resulting

in the volume I(x, y, z) of size X × Y × Z, where x ∈ x = {0, 1, ...X − 1}, y ∈ y

={0, 1, ...Y −1} and z ∈ z = {0, 1, ...Z−1}, thus possibly allowing for non-equidistant

spacing between two adjacent elements in the column. As discussed previously a and

b are used to denote two neighbouring columns.

We define a mapping function for each column a as La : {0, 1, ...Z−1} → R which

maps the index of sampled points in I(a, z) to Ĩ(a, z̃). For example, La(i) denotes the

z̃ coordinate of the i+1-th sample along column a, and La(i+ 1) > La(i) because of

the strictly increasing order of sampling along column a. An example is shown in Fig.

5.2. Further, a surface function for column a is defined as S(a), where S(a) ∈ z =

{0, 1, ...Z−1}. The function La(S(a)) can be viewed as labeling for surface S(a) with

the label set R (La(S(a)) ∈ R). For simultaneously segmenting λ (λ ≥ 2) surfaces, the

goal of the problem is to seek the labeling for surfaces La(Si(a)) where i = 1, 2 . . . λ

in I with minimum separation dj,j+1 where j = 1, 2, . . . λ−1 between adjacent pair of

surfaces. It is to be noted, that the surfaces are ordered, i.e, La(Si+1(a)) ≥ La(Si(a)).

The corresponding energy function for this formulation is shown in Equation 5.2:

E(S) =
λ∑
i=1

(
∑
a∈x×y

Di(La(Si(a)))

+
∑

(a,b)∈Ns

Vab(La(Si(a)), Lb(Si(b)))

+
λ−1∑
i=1

∑
a∈x×y

Ha(La(Si+1(a)), La(Si(a)))

(5.2)
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column(a) in 𝐼𝐼 column(a) in 𝐼𝐼
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.

.

z =Z-1

Irregular sampling

Nodes in graph space
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Column 
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Figure 5.2: Example of column structure for irregularly sampled space using mapping
function.
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Herein, the surface smoothness term is modelled as a convex function as shown

in Equation (5.3).

Vab(La(Si(a)), Lb(Si(b))) = ψ(La(Si(a))− Lb(Si(b))) (5.3)

where, ψ(.) is a convex function, and without loss of generality, we assume that

ψ(0) = 0 [7].

The surface separation term is modelled as a hard constraint for enforcing the

minimum separation between a pair of surfaces as shown in Equation (5.4).

Ha(La(Si+1(a)), La(Si(a))) =
∞, if La(Si+1(a))− La(Si(a)) < di,i+1

0, otherwise

(5.4)

where di,i+1 is the minimum separation between a pair of adjacent surfaces. The

method is also capable of incorporating a convex surface separation penalty while

enforcing a minimum separation constraint in the irregularly sampled space using the

same framework.

5.2.2 Graph Construction

The high level idea of the graph construction for our method is similar to the

traditionally used optimal surface segmentation methods. For each surface Si, a

subgraph Gi is constructed. Herein, the intra-column edges are added to enforce

surface monotonicity and encode the data term for cost volume Di (for searching Si).

Inter-column edges are added between a pair of neighbouring columns a and b to

enforce the surface smoothness penalty term Vab(.).

The graph G for the simultaneous search of all λ surfaces consists of the union

of those λ subgraphs Gi’s. Furthermore, inter-surface edges are added between the
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corresponding columns of subgraphs Gi and Gi+1 to incorporate the surface separation

term for surface distance changes between two surfaces. A pair of columns with

respect to the same (x, y)-pairs in the domain x × y of subgraphs Gi, Gi+1 for

two adjacent surfaces is defined as corresponding columns. The graph G is then

solved by computing a maximum flow which minimizes the energy function E(S)

(Equation. (5.2)). The positions of the λ target surfaces are obtained by mapping

the resultant solution to R space using the mapping function La(.).

The graph is constructed using the cost volumes generated for λ surfaces from

volume I(x, y, z). Each element in the cost volume Di to search Si is represented

by a node ni(a, z) (z ∈ z) in Gi. The following edges are added to incorporate the

different energy terms:

5.2.2.1 Intra-column Edges

To ensure the monotonicity of the target surfaces (i.e., the target surface intersects

each column exactly one time) and encode the data cost term; intra-column edges

are added to each subgraph Gi as described in Ref. [2]. Along every column a for

surface Si, each node ni(a, z)(z > 0) has a directed edge with +∞ weight to the node

immediately below it and an edge with Di(La(z−1)) weight in the opposite direction.

Additionally, an edge with +∞ weight is added from the source node s to each node

ni(a, 0) and an edge with Di(La(Z − 1)) weight is added from node ni(a, Z − 1) to

the terminal node t.

Any s-t cut with finite cost contains only one of the finite weight edges Di(La(.))

for each column a, thus enforcing surface monotonicity. This is because, if any s-t

cut included more than one finite weight edges, then by construction it must include

at least one infinite weight edge thereby making its cost infinite. Therefore, any finite

s-t cut shall intersect each column exactly one time.
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5.2.2.2 Inter-column Edges

Inter-column arcs are added between pairs of neighbouring columns a and b to

each subgraph Gi to encode the surface smoothness term. The incorporation of a

convex smoothness term is presented here. Denote a function operator f(r1, r2) as

shown in Equation (5.5).

f(r1, r2) =


0 , if r1 < r2

ψ(r1 − r2), otherwise

(5.5)

where ψ(.) is a convex function.

A general weight setting function g(.) is used for the inter-column edges between

two neighboring columns. The following inter-column edges are added :

For all k1 ∈ [0, Z − 1] and k2 ∈ [1, Z − 1], a directed edge with weight setting

g(k1, k2) as shown in Equation (5.6) is added from node ni(a, k1) to node ni(b, k2).

Additionally, a directed edge is added from node ni(a, k1) to terminal node t with

weight setting g(k1, Z).

g(k1, k2) = f(La(k1), Lb(k2 − 1))

− f(La(k1 − 1), Lb(k2 − 1))− f(La(k1), Lb(k2))

+ f(La(k1 − 1), Lb(k2))

(5.6)

Where, if k1 = 0, then k1− 1 /∈ z, therefore f(La(k1− 1), Lb(k2− 1)) = f(La(k1−

1), Lb(k2)) = 0 and if k2 = Z, then k2 /∈ z, therefore f(La(k1), Lb(k2)) = f(La(k1 −

1), Lb(k2)) = 0.

In a similar manner, for all k1 ∈ [0, Z−1] and k2 ∈ [1, Z−1], edges are constructed

from nodes ni(b, k1) to nodes ni(a, k2) with weight setting g(k1, k2) as shown in Equa-

tion (5.7). Additionally a directed edge is added from node ni(b, k1) to terminal node
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t with weight setting g(k1, Z).

g(k1, k2) = f(Lb(k1), La(k2 − 1))

− f(Lb(k1 − 1), La(k2 − 1))− f(Lb(k1), La(k2))

+ f(Lb(k1 − 1), La(k2))

(5.7)

It should be noted that weight setting function g(k1, k2) in Equation (5.7) is

similar to Equation (5.6) with only the column mapping function La(.) and Lb(.)

interchanged. Also, in practice we only add edges with edge weight greater than zero

in the graph.

Lemma 1: For any k1 and k2, the function g(k1, k2) is non-negative.

Lemma 2: In any finite s-t cut C, the total weight of the edges between any two

adjacent columns a and b (denoted by Ca,b) equals to the surface smoothness cost of

the resulting surface Si with Si(a) = k1 and Si(b) = k2, which is ψ(La(k1)− Lb(k2)),

where ψ(.) is a convex function.

Proof of Lemma 1 and Lemma 2 are presented in Section 5.3.

Example of a graph construction of two neighbouring columns a and b for a given

surface with enforcement of convex surface smoothness constraint is shown in Fig. 5.3.

Herein, an edge from ni(a, k1) to node ni(b, k2) is denoted as Ei(ak1 , bk2) for the i-th

surface. For clarity, an edge Ei(ak1 , bk2) is denoted as Type I if k2 > k1, as Type II

if k2 = k1 and as Type III if k2 < k1. The respective edge weights in the graph are

summarized in Table 5.1. The convex function used in the example is a quadratic,

taking the form ψ(k1 − k2) = (k1 − k2)2.

The following can be verified from the example shown Fig. 5.3:

• The correct cost of cut C1 = (21− 12)2 = 81. It can be verified that the inter-

column edges contributing to the cost of cut C1 are Type I edges E(a2, b3) and



www.manaraa.com

65

t

s

4

Column a Column b

z = 0

z = 1

z = 2

z = 3

z = 4

z = 5

z = 0

z = 1

z = 2

z = 3

z = 4

z = 5

16

34

25

21

52

1

3

37

28

12

50

+ ∞    

Intra-column Edge   

Inter-column Edge Type I  

Inter-column Edge Type II  

Inter-column Edge Type III 

Lb(z)

Node of column a with 
corresponding label La(z).La(z)

Node of column b with 
corresponding label Lb(z).    

C2

C1

C3

C4

Figure 5.3: Example graph construction of two neighboring columns a and b to demon-
strate enforcement of convex surface smoothness constraints in irregularly sampled
space.
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E(a1, b3). Summing the edge weights from Table 5.1, cost of cut C1 = 65+16 =

81.

• The correct cost of cut C2 = (25 − 37)2 = 144. It can be verified that the

inter-column edges contributing to the cost of cut C2 are Type I edges E(b4, a5),

E(b3, a4) and Type II edge E(b4, a4). Summing the edge weights from Table 5.1,

cost of cut C2 = 9 + 9 + 126 = 144.

• The correct cost of cut C3 = (25− 3)2 = 484. It can be verified that the inter-

column edges contributing to the cost of cut C3 are Type I edges E(a0, b2),

E(a1, b2), E(a1, b3), E(a2, b3), Type II edges E(a3, b3), E(a2, b2) and Type III

edge E(a3, b2). Summing the edge weights from Table 5.1, cost of cut C3 =

1 + 152 + 16 + 65 + 88 + 90 + 72 = 484.

• The correct cost of cut C4 = (25 − 1)2 = 576. It can be verified that the

inter-column edges contributing to the cost of cut C4 are Type I edges E(a0, b1),

E(a0, b2), E(a1, b2), E(a1, b3), E(a2, b3), Type II edges E(a3, b3), E(a2, b2), E(a1, b1)

and Type III edges E(a3, b2), E(a3, b1), E(a2, b1). Summing the edge weights

from Table 5.1, cost of cut C4 = 8+1+152+16+65+88+90+48+72+16+20 =

576.

5.2.2.3 Inter-surface Edges

The surface separation term Ha(.) between two adjacent surfaces is enforced by

adding edges in a similar manner as described in Ref. [65] from column a in subgraph

Gi to corresponding column a in subgraph Gi+1. Along every column a in Gi, each

node ni(a, z) has a directed edge with +∞ weight to the node ni+1(a, z
′), (z′ ∈

z, La(z
′)−La(z) ≥ di,i+1, La(z

′− 1)−La(z) < di,i+1). Additionally an edge with +∞

weight is added from node ni(a, z) to the terminal node t if La(Z−1)−La(z) < di,i+1.

It can be verified, that no finite s-t cut is possible when La(z
′) − La(z) < di,i+1,
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Table 5.1: Summary of inter-column edge weights of the graph construction in
Fig. 5.3, based on a quadratic convex function of the form ψ(k1 − k2) = (k1 − k2)2.

Edge Type Weight Edge Type Weight

E(a0, b1) I 8 E(b2, a1) III 64
E(a0, b2) I 1 E(b3, a1) III 368
E(a1, b1) II 48 E(b3, a2) III 95
E(a1, b2) I 152 E(b3, a3) II 40
E(a1, b3) I 16 E(b3, a4) I 9
E(a2, b1) III 20 E(b4, a1) III 216
E(a2, b2) II 90 E(b4, a2) III 90
E(a2, b3) I 65 E(b4, a3) III 72
E(a3, b1) III 16 E(b4, a4) II 126
E(a3, b2) III 72 E(b4, a5) I 9
E(a3, b3) II 88 E(b5, a1) III 312
E(a4, b1) III 36 E(b5, a2) III 130
E(a4, b2) III 162 E(b5, a3) III 104
E(a4, b3) III 279 E(b5, a4) III 234
E(a4, b4) II 36 E(b5, a5) II 247
E(a5, b1) III 72
E(a5, b2) III 324
E(a5, b3) III 576
E(a5, b4) III 315
E(a5, b5) II 221
E(a5, b6) I 4
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22

17

8

5

z’ = 2

z’ = 1

z’ = 0

z = 3

z = 2

z = 1

z = 02

10

14

18

Node of column a 
with label La(z) in for 
adjacent surface Si.
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La(z)
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Figure 5.4: An example graph for incorporation of surface separation constraint be-
tween two corresponding columns is shown. Only the inter-surface edges are shown
for clarity. The minimum separation constraint di,i+1 = 2. It can be seen that
cut C1 is a feasible cut since the minimum separation constraint is not violated
while cut C2 is infeasible since the minimum separation constraint is violated as
La(z

′ = 1)− La(z = 1) < di,i+1

since by construction an inter-surface edge of +∞ weight will be cut, thus making

the cost infinite. An example of a graph construction for two corresponding columns

of adjacent pair of surfaces with enforcement of the surface separation constraint is

shown in Fig. 5.4.

Thus the surface separation term Ha(.) is correctly encoded in graph G.

5.2.3 Surface Recovery from Minimum s-t cut

The minimum s-t cut in the graph uniquely defines optimal λ surfaces Si where

i = 1, 2 . . . λ. For a given surface Si, the surface location for each col(x, y) ∈ z, where

x ∈ x and y ∈ y is given by the minimum s-t cut. The final surface positions for each
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column a is recovered by applying the mapping function La : {0, 1, ...Z − 1} → R,

where a ∈ x × y, thereby yielding the resultant surface positions for each column

La(Si(a)) ∈ z̃, where z̃ ∈ R.

5.3 Proof of Correctness of Graph
Construction (Aim 2.2)

5.3.1 Proof for Lemma 1

Lemma 1: For any k1 and k2, the function g(k1, k2) is non-negative.

Proof: Let us consider the function g(k1, k2) for edges from column a to neigh-

boring column b as shown in Equation (5.6). We need to prove that g(k1, k2) ≥ 0.

The reader should recall because of the strictly increasing order of sampling, La(k1) >

La(k1 − 1) and Lb(k2) > Lb(k2 − 1). ψ(·) is a convex function with ψ(0) = 0. The

proof is presented in a case-by-case basis.

Case 1: La(k1) < Lb(k2 − 1)

Thus, La(k1 − 1) < Lb(k2 − 1). As Lb(k2) > Lb(k2 − 1), we have La(k1) < Lb(k2) and

La(k1− 1) < Lb(k2). Since f(r1, r2) = 0 if r1 < r2. It is straightforward to verify that

g(k1, k2) = 0, in Equation (5.6).

Case 2: La(k1) ≥ Lb(k2 − 1) and La(k1) < Lb(k2)

In this case, as La(k1) > La(k1 − 1), we have La(k1 − 1) < Lb(k2). Thus, g(k1, k2)

takes the following form in Equation (5.8).

g(k1, k2) = f(La(k1), Lb(k2 − 1))− f(La(k1 − 1), Lb(k2 − 1)) (5.8)

If La(k1 − 1) < Lb(k2 − 1), then g(k1, k2) = f(La(k1), Lb(k2 − 1)) = ψ(La(k1) −

Lb(k2−1)). Thus, g(k1, k2) ≥ 0 as ψ(La(k1)−Lb(k2−1)) ≥ 0 with La(k1) ≥ Lb(k2−1).

If La(k1 − 1) < Lb(k2 − 1), then g(k1, k2) = ψ(La(k1) − Lb(k2 − 1)) − ψ(La(k1 −

1) − Lb(k2 − 1)). We know that La(k1) − Lb(k2 − 1) > La(k1 − 1) − Lb(k2 − 1) > 0.
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Thus, g(k1, k2) > 0 as ψ(0) = 0.

Therefore, in this case g(k1, k2) > 0.

Case 3: La(k1) ≥ Lb(k2)

In this case, La(k1) > Lb(k2−1) as Lb(k2) > Lb(k2−1). We distinguish three subcases:

1) La(k1 − 1) < Lb(k2 − 1), 2) La(k1 − 1) < Lb(k2) and 2) La(k1 − 1) ≥ Lb(k2 − 1),

and 3) La(k1 − 1) ≥ Lb(k2).

Subcase 1): If La(k1 − 1) < Lb(k2 − 1), then

g(k1, k2) = f(La(k1), Lb(k2 − 1))− f(La(k1), Lb(k2))

= ψ(La(k1)− Lb(k2 − 1))− ψ(La(k1)− Lb(k2))

Since Lb(k2 − 1) < Lb(k2), we have La(k1) − Lb(k2 − 1) > La(k1) − Lb(k2). Thus,

g(k1, k2) > 0 as ψ(0) = 0.

Subcase 2): If La(k1− 1) < Lb(k2) and La(k1− 1) ≥ Lb(k2− 1), then g(k1, k2) takes

the form shown in Equation (5.9) as La(k1) ≥ Lb(k2) > La(k1 − 1) ≥ Lb(k2 − 1).

g(k1, k2) =f(La(k1), Lb(k2 − 1))

− f(La(k1 − 1), Lb(k2 − 1))− f(La(k1), Lb(k2))

= ψ(La(k1)− Lb(k2 − 1))

− ψ(La(k1 − 1)− Lb(k2 − 1))− ψ(La(k1)− Lb(k2))

(5.9)

Let La(k1)−Lb(k2) = δ1, Lb(k2)−La(k1−1) = δ2 and La(k1−1)−Lb(k2−1) = δ3,

where δ1 ≥ 0, δ2 > 0 and δ3 ≥ 0.

Rewriting Equation (5.9) and substituting these values, we get the following ex-

pression expression,
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g(k1, k2) = ψ(La(k1)− Lb(k2 − 1))

− ψ(La(k1 − 1)− Lb(k2 − 1))− ψ(La(k1)− Lb(k2))

= ψ(δ1 + δ2 + δ3)− ψ(δ3)− ψ(δ1)

It can be verified that g(k1, k2) > 0 as ψ(·) is convex.

Subcase 3): If La(k1−1) ≥ Lb(k2), then La(k1)−Lb(k2−1) > 0, La(k1−1)−Lb(k2) ≥

0, La(k1 − 1)− Lb(k2 − 1) > 0, and La(k1)− Lb(k2) > 0. Hence,

g(k1, k2) = ψ(La(k1)− Lb(k2 − 1))

− ψ(La(k1 − 1)− Lb(k2 − 1))− ψ(La(k1)− Lb(k2))

+ ψ(La(k1 − 1)− Lb(k2)).

In this subcase, let La(k1) − La(k1 − 1) = δ1, La(k1 − 1) − Lb(k2) = δ2 and

Lb(k2) − Lb(k2 − 1) = δ3, where δ1 > 0, δ2 ≥ 0 and δ3 > 0. Substituting this in the

expression for g(k1, k2), we get

g(k1, k2) = ψ(δ1 + δ2 + δ3)− ψ(δ2 + δ3)− ψ(δ1 + δ2) + ψ(δ2).

Let us first consider the case, δ2 = 0, we get the following expression,

g(k1, k2) = ψ(δ1 + δ3)− ψ(δ3)− ψ(δ1)

It can be verified that g(k1, k2) > 0 as ψ(·) is convex.

Next, consider the case when δ2 > 0. It can be observed that δ1+δ2+δ3 > δ1+δ2 >

δ2. Therefore, δ1 + δ2 can be expressed as, δ1 + δ2 = λ1δ2 + (1− λ1)(δ1 + δ2 + δ3).

Solving for λ1, we get λ1 = δ3
δ1+δ3

.

Similarly, it can be observed that δ1 + δ2 + δ3 > δ2 + δ3 > δ2 and δ2 + δ3 can be

expressed as, δ2 + δ3 = λ2δ2 + (1− λ2)(δ1 + δ2 + δ3) where λ2 = δ1
δ1+δ3

.
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From the definition of a convex function, and adding the above two expressions,

we get the following,

ψ(δ1 + δ2) + ψ(δ2 + δ3) ≤ (λ1 + λ2)ψ(δ2) + (2− λ1 − λ2)ψ(δ1 + δ2 + δ3).

Substituting the value of λ1 and λ2, we get ψ(δ1 + δ2) + ψ(δ2 + δ3) ≤ ψ(δ2) +

ψ(δ1 + δ2 + δ3). Therefore it can be verified that g(k1, k2) ≥ 0.

Thus, through these exhaustive cases, it is shown that for any k1 and k2, the

function g(k1, k2) ≥ 0 or in other words is non-negative.

5.3.2 Proof for Lemma 2

Lemma 2: In any finite s-t cut C, the total weight of the edges between any two

adjacent columns a and b (denoted by Ca,b) equals to the surface smoothness cost of

the resulting surface Si with Si(a) = k1 and Si(b) = k2, which is ψ(La(k1)− Lb(k2)),

where ψ(.) is a convex function.

Proof: Denote an edge from ni(a, k1) to node ni(b, k2) as Ei(ak1 , bk2) for the i-th

surface. Assume k1 ≥ k2. Proof for the case when k2 ≥ k1 can be done in a similar

manner by interchanging the notations for column a and column b. To show: cost of

cut Ca,b = ψ(La(k1)− Lb(k2)).

We start by observing such a s-t cut Ca,b will consist of only the following inter-column

edges: {Ei(am, bn) , 0 ≤ m ≤ k1, k2 + 1 ≤ n ≤ Z}

Summing up the weights of the above edges using Equation 5.6, we obtain the

following expression:
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Ca,b =g(k1, Z) + g(k1, Z − 1) + g(k1, Z − 2)

+ . . .+ g(k1, k2 + 1)

+ g(k1 − 1, Z) + g(k1 − 1, Z − 1) + g(k1 − 1, Z − 2)

+ . . .+ g(k1 − 1, k2 + 1)

.

.

.

+ g(0, Z) + g(0, Z − 1) + g(0, Z − 2)

+ . . .+ g(0, k2 + 1)

(5.10)

Let us first evaluate part of Equation (5.10) for k, where 0 ≤ k ≤ k1 as shown

below:

g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + . . .+ g(k, k2 + 1)

= f(La(k), Lb(Z − 1))− f(La(k − 1), Lb(Z − 1))

−f(La(k), Lb(Z)) + f(La(k − 1), Lb(Z))

+f(La(k), Lb(Z − 2))− f(La(k − 1), Lb(Z − 2))

−f(La(k), Lb(Z − 1)) + f(La(k − 1), Lb(Z − 1))

+f(La(k), Lb(Z − 3))− f(La(k − 1), Lb(Z − 3))

−f(La(k), Lb(Z − 2)) + f(La(k − 1), Lb(Z − 2))

.

.

.

+f(La(k), Lb(k2))− f(La(k − 1), Lb(k2))

−f(La(k), Lb(k2 + 1)) + f(La(k − 1), Lb(k2 + 1))
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= f(La(k), Lb(k2))− f(La(k − 1), Lb(k2))

−f(La(k), Lb(Z)) + f(La(k − 1), Lb(Z))

As described in Section 5.2.2.2,

f(La(k), Lb(Z)) = 0, f(La(k − 1), Lb(Z)) = 0

(∵ Z /∈ z)

=f(La(k), Lb(k2))− f(La(k − 1), Lb(k2))

(5.11)

By simplifying Equation (5.10) using Equation (5.11), it follows that:

Ca,b = f(La(k1), Lb(k2))− f(La(k1 − 1), Lb(k2))

+ f(La(k1 − 1), Lb(k2))− f(La(k1 − 2), Lb(k2))

.

.

.

+ f(La(1), Lb(k2))− f(La(0), Lb(k2))

+ f(La(0), Lb(k2))− f(La(−1), Lb(k2))

=f(La(k1), Lb(k2))− f(La(−1), Lb(k2))

f(La(−1), Lb(k2)) = 0, (∵ −1 /∈ z)

=ψ(La(k1)− Lb(k2))

(5.12)

Therefore, for this case it is shown that cost of cut Ca,b = ψ(La(k1)− Lb(k2)).

In a similar manner when k2 ≥ k1, the s-t cut Cb,a will consist of the following

inter-column edges: {Ei(bm, an) , 0 ≤ m ≤ k2, k1 + 1 ≤ n ≤ Z}.
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Summing up the weights of the above edges using Equation 5.7, we obtain the

expression shown in Eqn 5.13.

Cb,a =g(k2, Z) + g(k2, Z − 1) + g(k2, Z − 2)

+ . . .+ g(k2, k1 + 1)

g(k2 − 1, Z) + g(k2 − 1, Z − 1) + g(k2 − 1, Z − 2)

+ . . .+ g(k2 − 1, k1 + 1)

.

.

.

g(0, Z) + g(0, Z − 1) + g(0, Z − 2)

+ . . .+ g(0, k1 + 1)

(5.13)

Similar to the previous case, let us first evaluate part of Equation (5.13) for k,

where 0 ≤ k ≤ k2 as shown below:

g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + . . .+ g(k, k1 + 1)

= f(Lb(k), La(Z − 1))− f(Lb(k − 1), La(Z − 1))

−f(Lb(k), La(Z)) + f(Lb(k − 1), La(Z))

+f(Lb(k), La(Z − 2))− f(Lb(k − 1), La(Z − 2))

−f(Lb(k), La(Z − 1)) + f(Lb(k − 1), La(Z − 1))

+f(Lb(k), La(Z − 3))− f(Lb(k − 1), La(Z − 3))

−f(Lb(k), La(Z − 2)) + f(Lb(k − 1), La(Z − 2))

.

.

.
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+f(Lb(k), La(k1))− f(Lb(k − 1), La(k1))

−f(Lb(k), La(k1 + 1)) + f(Lb(k − 1), La(k1 + 1))

= f(Lb(k), La(k1))− f(Lb(k − 1), La(k1))

−f(Lb(k), La(Z)) + f(Lb(k − 1), La(Z))

As described in Section 5.2.2.2,

f(Lb(k), La(Z)) = 0, f(Lb(k − 1), La(Z)) = 0(∵ Z /∈ z)

=f(Lb(k), La(k1))− f(Lb(k − 1), La(k1))

(5.14)

By simplifying Equation (5.13) using Equation (5.14), it follows that:

Cb,a = f(Lb(k2), La(k1))− f(Lb(k2 − 1), La(k1))

+ f(Lb(k2 − 1), La(k1))− f(Lb(k2 − 2), La(k1))

.

.

.

+ f(Lb(1), La(k1))− f(Lb(0), La(k1))

+ f(Lb(0), La(k1))− f(Lb(−1), La(k1))

=f(Lb(k2), La(k1))− f(Lb(−1), La(k1))

f(Lb(−1), La(k1)) = 0, (∵ −1 /∈ z)

=ψ(Lb(k2)− La(k1))

(5.15)

Therefore, for this case it is shown that cost of cut Cb,a = ψ(Lb(k2)− La(k1)).

Thus the surface smoothness term Vab(.) is correctly encoded in graph G.
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5.4 Validation for Subvoxel Accuracy and
Super Resolution Segmentation Accuracy

(Aim 2.3)

In this section, we present the application of our method on Spectral Domain

Optical Coherence Tomography (SD-OCT) volumes to segment multiple surfaces si-

multaneously with subvoxel and super resolution segmentation accuracy. The pro-

posed method was also applied to Intravascular Ultrasound (IVUS) images for Lu-

men and Media segmentation with subvoxel accuracy. The experiment conducted on

the SD-OCT volumes have a twofold objective. The first experiment is designed to

demonstrate multiple surface segmentation with convex priors while achieving sub-

voxel accuracy. The second experiment is used to show that the proposed method

has the potential to perform super resolution segmentation with sufficient accuracy,

i.e achieve adequate segmentation accuracy by operating in the downsampled version

of data as compared to segmenting the data in the original resolution with convex

surface smoothness constraints.

5.4.1 Experiment Setting for SD-OCT Volumes of
Normal Eye

To demonstrate utility of the method in simultaneous segmentation of multiple

surfaces, three surfaces were simultaneously segmented in this study. The surfaces

are S1- Internal Limiting Membrane (ILM), S2- Inner Aspect of Retinal Pigment

Epithelium Drusen Complex (IRPEDC) and S3- Outer Aspect of Bruch Membrane

(OBM) as shown in Fig. 5.5.

As discussed earlier Abrámoff et al. [65] exploited the additional information con-

tained in the partial volume effect by generalizing the graph by applying a deformation

field (allowing non-equidistant spacing between nodes) to achieve subvoxel accuracy.

The method used hard smoothness constraints to model the surface smoothness term.

Our method is directly applicable to such cases and allows for usage of a convex

smoothness penalty for surface smoothness. In other words, our method can be used
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(a) (b)

S1

S2

S3

Figure 5.5: (a)A single B-scan from a SD-OCT volume of a normal eye, (b) Three
identified target surfaces S1, S2 and S3.

to achieve subvoxel accuracy or super resolution accuracy with a convex smooth-

ness penalty term. In this experiment we compare the segmentation accuracy of the

proposed method in the irregularly sampled space to the optimal surface segmen-

tation method using convex smoothness constraints in the regularly sampled space

(OSCS) [9].

5.4.1.1 Data

30 SD-OCT volumes of normal eyes and their respective expert manual tracings

were obtained from the publicly available repository of datasets Ref. [68]. The 3-

D volumes (1000 × 100 × 512 voxels with voxel size 6.54 × 67 × 3.23 µm3) for our

study were randomly selected from the repository. 5 SD-OCT volumes were used for

training of the algorithm and cost function image parameters while the remaining 25

SD-OCT volumes were used for testing. The obtained expert manual tracings were

marked with equidistant voxel centers. Thus, for fair comparison the original image

volumes were down-sampled to create“input volume data”. The target surfaces were

then mapped from high resolution to its location in the down-sampled resolution to

generate “subvoxel accurate expert manual tracings”.
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5.4.1.2 Workflow

The original SD-OCT volumes first undergo pre-processing which involves the ap-

plication of a 10×10×10 median filter followed by a 10×10×10 Gaussian filter with

a standard deviation of 7 to denoise the original data. The resulting volumes are then

down-sampled by a factor of 4 in the x direction, followed by a down-sampling by a

factor of η in the z direction, resulting in input volume data of size 250 × 100 × 512
η

voxels. Further cost function image volumes Di,η, (i = 1, 2, 3) are generated for each

target surface at scale η using the input volume data.

Experiment for Subvoxel Accuracy - The down-sampling factor η = 4 is

chosen for this experiment. The cost function image volumes are simultaneously

segmented using the OSCS method to obtain the segmentation for comparison with

the proposed method. Thereafter, a shift of evenly distributed voxels to deformed

space is computed using gradient vector flow (GVF) [80] as described in Section 5.4.1.4

on the input volume data. The deformation field is then applied to the cost function

image volumes to obtain D′i,η=4 , (i = 1, 2, 3) and the shifted position of each voxel

center is recorded. More details regarding the application of the deformation field

on the cost function image volume can be found in Ref. [65]. Finally, the deformed

cost function image volumes D′i,η=4 , (i = 1, 2, 3) are segmented using the proposed

method with non-equidistant spacing of the voxel centers based on the shifted voxel

centers.

The generated input volume data is used to evaluate segmentation accuracy of the

two methods with respect to the subvoxel accurate expert manual tracings. For fair

and robust analysis, the deformation obtained from the GVF was applied to the auto-

mated segmentations obtained from the OSCS method, resulting in deformed OSCS

(DOSCS) segmentations. The quantitative analysis was conducted by comparing the

segmentations obtained from the OSCS method, proposed method and DOSCS seg-
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mentations with the subvoxel accurate expert manual tracings. The corresponding

workflow of the experiment is shown in Fig. 5.6.

Experiment for Super Resolution Accuracy - In this experiment we down-

sample the data to four different scales at η = 2, 4, 6, 8. The cost function image

volume at the original scale (η = 1) is simultaneously segmented using the OSCS

method to obtain the segmentation for comparison with the proposed method. The

proposed method is applied to input volume data at the down-sampled scales. The

shift of evenly distributed voxels to deformed space at each down-sampling scale is

computed using gradient vector flow (GVF) [80] on the input volume data at each

scale η. The deformation field is then applied to the cost function image volumes at

their respective scales and the shifted position of each voxel center is recorded. Finally,

the deformed cost function image volumes D′i,η , (i = 1, 2, 3 and η = 2, 4, 6, 8) at each

scale n are segmented using the proposed method with non-equidistant spacing of the

voxel centers based on the shifted voxel centers due to the applied deformation.

The quantitative analysis was conducted by comparing the segmentations ob-

tained from the OSCS method at the original scale and the proposed method at

different down-sampling scales with the expert manual tracings. The corresponding

workflow of the experiment is shown in Fig. 5.7.

5.4.1.3 Cost Function Design

The cost function image volumes encode the data term shown in Equation (5.2).

To detect surfaces S1 and S3, a 3-D Sobel filter of size 5 × 5 × 5 voxels is applied

to generate cost volumes D1 and D3 wherein the vertical edges for dark to bright

transitions and bright to dark transitions are emphasized. To detect surface S2, a

machine learning based approach is adopted to generate the cost volume for the same.

For each voxel I(x, y, z) in an image slice of the input volume data, a 11× 11 window

centered at voxel I(x, y, z) is used to generate a feature vector comprising of the
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Figure 5.6: Experiment design for segmentation of SD-OCT volumes of normal eye
with subvoxel accuracy.
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Figure 5.7: Experiment design for segmentation of SD-OCT volumes of normal eye
for super resolution accuracy.
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intensity values of each voxel in the given window, thus resulting in 121 features. A

random forest classifier [81] with 10 trees is then trained on voxels of the training set

input image volumes to learn the probability maps which indicate the likelihood of

voxel belonging to the surface of interest with respect to the expert manual tracings.

The trained classifier is then applied to each voxel of the test set resulting in a

probability map D′2(x, y, z). Finally, cost volume D2 to detect S2 is generated by

assigning D2(x, y, z) = (1−D′2(x, y, z))× 255 as voxel intensity.

5.4.1.4 Gradient Vector Field

A gradient vector field (GVF) [80] is a feature preserving diffusion of the gradient

in a given image volume. In this study, GVF is used as a deformation field F (x, y, z)

obtained directly from the input volume data acting on the center of each voxel

(x, y, z) to shift the evenly distributed voxels to the deformed space. The voxel centers

are thus displaced towards the regions where salient transitions of image properties

are more likely to occur. The shift of the centers of the voxels is given by Equation

(5.16).

(x′, y′, z′) = (x, y, z) + λF (x, y, z) (5.16)

where λ is a normalization factor. The displacement of each voxel center is confined

to the same voxel. Therefore, F (x, y, z) is normalized such that the maximum de-

formation is equal to half of the voxel size δ. The normalization factor takes the

following form as show in Equation (5.17).

λ =
δ

2×max(x,y,z)∈(X,Y,Z)||F (x, y, z)||
(5.17)

5.4.1.5 Parameter Setting

The same parameters were used for segmenting the three surface by the OSCS

method and the proposed method at each scale n. A linear (convex) function, ψ(k1−
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k2) = |k1 − k2| was used to model the surface smoothness term Vab(.). The surface

separation term Ha(.) is modelled as a hard constraint for enforcing the minimum

separation between a pair of surfaces. The minimum separation parameters used

are d1,2 = 15 and d2,3 = 1 for η = 4 in the experiment for subvoxel accuracy. The

minimum separation parameters used in the experiment for super resolution accuracy

at different scales are: d1,2 = 60 and d2,3 = 4 for η = 1, d1,2 = 30 and d2,3 = 2 for

η = 2, d1,2 = 15 and d2,3 = 1 for η = 4, d1,2 = 10 and d2,3 = 0.8 for η = 6, d1,2 = 7

and d2,3 = 0.5 for η = 8.

5.4.2 Segmentation Results for SD-OCT Volumes of
Normal Eye

The segmentation accuracy was estimated using unsigned mean surface position-

ing error (UMSP) and unsigned average symmetric surface distance error (UASSD).

The UMSP error for a surface was computed by averaging the vertical difference be-

tween the subvoxel accurate manual tracings and the automated segmentations for all

the columns in the input volume data. The UASSD error for a surface was calculated

by averaging the closest distance between all surface points of the automated seg-

mentation and those of the expert manual tracings in the physical space. Statistical

significance of the observed differences was determined using paired t-test for which

p values of 0.05 were considered significant.

Results for Subvoxel Accuracy - The USMP errors are summarized in Table

5.2 and the UASSD errors are summarized in Table 5.3. Fig. 5.8 and 5.9 show

the performance comparison of the proposed method, the OSCS method [9] and the

DOSCS segmentations. Our method produced significantly lower UMSP and UASSD

errors for S1 (p<0.01), S2 (p<0.01) and S3 (p<0.001) compared to the OSCS method

and the DOSCS segmentations.

Qualitatively the algorithm produced very good and consistent segmentations.

The qualitative illustrations are shown in Fig. 5.10 and 5.11. In both the illustrations,
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Figure 5.8: Unsigned mean surface positioning errors observed in 25 volumetric OCT
images for subvoxel accuracy.
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Table 5.2: Unsigned mean surface positioning error (UMSP) (mean ± standard de-
viation) in voxels for subvoxel accuracy. Obsv - Subvoxel accurate expert manual
tracings.

Surface OSCS vs. Obsv DOSCS vs. Obsv Our method vs. Obsv

S1 0.38 ± 0.05 0.34 ± 0.05 0.23 ± 0.04
S2 0.58 ± 0.37 0.57 ± 0.36 0.50 ± 0.32
S3 0.93 ± 0.47 0.74 ± 0.45 0.47 ± 0.43

Overall 0.63 ± 0.30 0.55 ± 0.29 0.40 ± 0.26

Table 5.3: Unsigned average symmetric surface distance error (UASSD) (mean ±
standard deviation) in µm for subvoxel accuracy. Obsv - Expert manual tracings.

Surface OSCS vs. Obsv DOSCS vs. Obsv Our method vs. Obsv

S1 4.91 ± 0.63 4.58 ± 0.73 3.05 ± 0.55
S2 7.35 ± 3.91 7.12 ± 3.76 6.51 ± 3.61
S3 12.06 ± 5.03 9.10 ± 4.97 6.37 ± 4.77

Overall 8.11 ± 3.19 6.93 ± 3.15 5.31 ± 2.98

the first row shows a single B-scan of the input image volume with the subvoxel

accurate expert manual tracings and the automated segmentations. The second,

third and fourth row show the magnification of the black boxes in the first row

corresponding to the surfaces ILM, IRPEDC and OBM respectively. The first column

shows the subvoxel accurate expert manual tracings. The second column shows the

subvoxel accurate expert manual tracings vs OSCS segmentation. The third column

shows the subvoxel accurate expert manual tracings vs DOSCS segmentation. The

fourth column shows the subvoxel accurate expert manual tracings vs segmentation

from our method.

It can be seen from Fig. 5.10 and 5.11 that the proposed method yields more ac-

curate segmentations compared to the OSCS method and the DOSCS segmentations
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Figure 5.10: Illustration of results on a single B-scan from input image volume. Red -
ILM expert tracing, Green - IRPEDC expert tracing, Dark blue - OBM expert tracing,
Yellow - ILM automated segmentation, Magenta - IRPEDC automated segmentation,
Light blue - OBM automated segmentation.
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Figure 5.11: Illustration of results on a single B-scan from input image volume. Red -
ILM expert tracing, Green - IRPEDC expert tracing, Dark blue - OBM expert tracing,
Yellow - ILM automated segmentation, Magenta - IRPEDC automated segmentation,
Light blue - OBM automated segmentation.
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for Surface 2 and Surface 3, while from Fig. 5.11, it can be seen that the proposed

method also yields more accurate segmentation for Surface 1. Furthermore, the sec-

ond, third and fourth rows clearly demonstrates that the proposed method yields a

much higher subvoxel accuracy for the segmentations. It can be seen from the last

row in Fig. 5.10 that even after applying the deformation to the OSCS segmentations,

the DOSCS segmentation do not achieve the globally optimum solution obtained by

using the proposed method with subvoxel accuracy. This is because all nodes encode

potential surface locations more precisely when the globally optimum solution is com-

puted in the irregularly sampled graph space by utilizing the information from the

partial volume effect.

Results for Super Resolution Accuracy - The UASSD errors are summarized

in Table 5.4. The results obtained from the proposed method at different down-

sampling scales (η = 2, 4, 6, 8) was compared to the segmentation obtained from the

OSCS method at the original scale (η = 1) to determine the relative accuracy of the

proposed method in the down-sampled resolutions. The performance of the proposed

method compared with the OSCS method for super resolution segmentation accuracy

is shown in Fig. 5.12. There was no significant difference between the UASSD errors

produced by the proposed method at η = 2 and the OSCS method at original scale

(η = 1) for S1 (p>0.05), S2 (p>0.05) and S3 (p>0.05). There was no significant

difference between the UASSD errors produced by the proposed method at η = 4 and

the OSCS method at original scale (η = 1) for S1 (p>0.05) and S3 (p>0.05) while

there was a significant difference for S2 (p<0.05). There was a significant difference

observed in between the UASSD errors produced by the proposed method at η = 6, 8

and the OSCS method at o riginal scale (η = 1) for S1 (p<0.05), S2 (p<0.05) and S3

(p<0.05).

In other words, the proposed method achieves adequate accuracy for down-sampled

resolutions at η = 2, 4 for the segmented surfaces when compared to the segmentation
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accuracy by the OSCS method in the original scale resolution. For lower resolutions

at scales η = 6, 8, the proposed method is not able to provide adequate super resolu-

tion accuracy. Therefore, the method has potential for super resolution accuracy at

down-sampled scales of η = 2, 4.

Table 5.4: Unsigned average symmetric surface distance error (UASSD) (mean ±
standard deviation) in µm for super resolution accuracy. Obsv - Expert manual
tracings, η - Down-sampling scale in z direction.

Surface S1 S2 S3

OSCS vs. Obsv at η = 1 2.53 ± 0.36 5.88 ± 3.28 5.81 ± 4.25
Our method vs. Obsv at η = 2 2.69 ± 0.41 6.18 ± 3.39 6.07 ± 4.41
Our method vs. Obsv at η = 4 3.05 ± 0.55 6.51 ± 3.61 6.37 ± 4.77
Our method vs. Obsv at η = 6 3.79 ± 0.94 7.58 ± 4.22 7.32 ± 5.27
Our method vs. Obsv at η = 8 5.45 ± 1.71 9.15 ± 5.23 9.21 ± 6.46

5.4.3 Experiment Setting for IVUS Images

To study the applicability of the proposed method in a broader range of image

segmentation tasks, segmentation of lumen and media with subvoxel accuracy was

performed in Intravascular Ultrasound (IVUS) images as shown in Fig. 5.13.

Atherosclerosis, a disease of the vessel wall, is the major cause of cardiovascular

diseases such as heart attack or stroke [82]. Early atherosclerosis results in remod-

elling, thus retaining the lumen despite plaque accumulation [83]. Atherosclerosis

plaque is located between lumen and media that can be identified in IVUS images.

Automated IVUS segmentation of lumen and media is of substantial clinical interest

and contributes to clinical diagnosis and assessment of plaque [84].

In this experiment we compare the segmentation accuracy of the lumen and media

using the proposed method with the complete set of methods used in the standardized

evaluation of IVUS image segmentation [84]. The compared methods are namely, P1
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(a) (b)

Figure 5.13: (a) A single frame of an IVUS multiframe dataset (b) Expert manual
tracings of the Lumen (red) and Media (green).
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- Shape driven segmentation based on linear projections [85], P2 - geodesic active con-

tour based segmentation [86], P3 - Expectation maximization based method [87] [88],

P4 - graph search based method [89], P5 - Binary classification of distinguishing be-

tween lumen and non-lumen regions based on multi-scale Stacked Sequential learning

scheme [90], P6 - Detection of Media border by holistic interpretation of the IVUS

image (HoliMAb) [91], P7 - Lumen segmentation based on a Bayesian approach [92],

P8 - Sequential detection [93]. Overview of the proposed method and each method’s

feature [84], including whether the algorithm was applied to lumen and/or media,

whether the segmentation was done in 2-D or 3-D and whether the method was

semi-automated or fully automated is shown in Table 5.5.

Table 5.5: Overview of the proposed and compared method features

Method Category Automation 2-D/3-D

P1 Lumen and Media Semi 2-D
P2 Lumen Semi 2-D
P3 Lumen and Media Semi 2-D
P4 Lumen and Media Fully 3-D
P5 Lumen Fully 3-D
P6 Media Fully 2-D
P7 Lumen Semi 2-D
P8 Lumen and Media Fully 2-D

Our method Lumen and Media Fully 3-D

5.4.3.1 Data

The data used for this experiment was obtained from the standardized evaluation

of IVUS image segmentation [84] database. In this experiment Dataset B as denoted

in Ref. [84] was used. The data comprises of a set of 435 images with a size of 384

× 384 pixels extracted from in vivo pullbacks of human coronary arteries from 10
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patients. The r espective expert manual tracings (subvoxel accurate) of lumen and

media for the images were also obtained from the reference database. The dataset

contains 10 multi-frame datasets, in which 3D context from a full pullback is provided.

Each dataset comprises of between 20 and 50 gated frames extracted from the full

pullback at the end-diastolic cardiac phase. Further, the obtained data comprised

of two groups - training and testing set. Approximately one fourth of the images

in the dataset were grouped in the training set and the remaining were grouped

as the testing set, to assure fair evaluation of the algorithms with respect to the

expert manual tracings. The experiment with the proposed method was conducted

in conformance with the directives provided for the IVUS challenge [84].

5.4.3.2 Workflow

Each slice of the volumes in the dataset is first converted into a polar coordinate

image as shown in Fig 5.14. The generated ”polar image volumes” undergo the

application of a 7 × 7 × 7 Gaussian filter with a standard deviation of 4 for denoising.

Next, cost function image volumes Dlumen and Dmedia are generated for the lumen and

media respectively. Further the GVF as discussed in Section 5.4.1.4 is computed on

the polar image volumes. The deformation field is then applied to cost function image

volumes and the shifted position of the voxel centers are recorded. The deformed cost

function image volumes D′lumen and D′media are then segmented using the proposed

method. Finally the resulting segmentations are mapped back to the original co-

ordinate system.

5.4.3.3 Cost Function Design

To detect the lumen and media, a machine learning approach is adopted. For each

pixel of the polar image in the training set, a total of 148 features were generated.

The following operators are applied in order to generate the features:

• 16 features are generated by applying a set of 16 Gabor filters to the image
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(a) (b)

Figure 5.14: (a) A single frame of an IVUS multiframe dataset (b) Polar transforma-
tion of (a). Red - Lumen, Green - Media.

according to the following kernel shown in Equation (5.18).

G(x, y) =
1

2πσxσy
e
−0.5×(( x

σx
)2+( y

σy
)2)+i2π(Ux+V y)

(5.18)

The parameters U and V (scaling and orientation) used are U = (0.0442, 0.0884,

0.1768, 0.3536), V = (0, π/4, π/2, 3π/4), σx = 0.5622U and σy = 0.4524U .

• 2 features are generated by applying a 3 × 3 Sobel kernel to the image in the x

and y directions.

• 6 features are generated by computing the mean value (m), standard deviation

(s) and the ratio m
s

of pixel intensities in a sliding window of size 1 × 10 pixels

in the x and y directions.

• 2 features defined as shadow (Sh) and relative shadow (Sr) related to the cumu-

lative gray level of the image are generated as shown in the following Equations

(5.19),(5.20).
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Sh(x, y) =
1

NrNc

Nr∑
ys=y

BI(x, ys) (5.19)

Sr(x, y) =
1

NrNc

Nr∑
ys=y

ysBI(x, ys) (5.20)

where BI(x, y) is a binary image obtained by thresholding the image with a

thresholding value = 14 and (Nr, Nc) are the image dimensions.

• 1 feature is generated by computing the local binary pattern [94].

• 121 features are generated by using a 11 × 11 window in a similar manner as

discussed in Section 5.4.1.3.

Using the expert manual tracings for the training set two separate random forest

classifiers [81] for lumen and media with 10 trees are trained on all the pixels of the

images in the training set to learn the probability maps which indicate the likelihood

of a pixel belonging to lumen or media respectively. The trained classifiers are then

applied to each pixel of the testing set to obtain the two cost function images Dlumen,

Dmedia for lumen and media in a similar manner as discussed in Section 5.4.1.3.

5.4.3.4 Parameter Setting

A linear (convex) function, ψ(k1 − k2) = |k1 − k2| was used to model the surface

smoothness term Vab(.). The surface separation term Ha(.) is modelled as a hard

constraint for enforcing the minimum separation between the lumen and media with

dlumen,media = 2.

5.4.4 Segmentation Results of Lumen and Media in
IUVS Images for Subvoxel Accuracy

The quantitative analysis was carried out by comparing the segmentations ob-

tained by our method with the expert manual tracings (subvoxel accurate). Three

evaluation measures were used to quantify the accuracy of the segmentations. We
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compare the evaluation measures obtained using our method with the measures of

methods (P1-P8) reported in Ref. [84]. The measures used are:

Jaccard Measure (JM) - Quantifies how much the segmented area overlaps with

the manual delineated area as shown in Equation (5.21):

JM(Rauto, Rman) =
|Rauto ∩Rman|
|Rauto ∪Rman|

(5.21)

where Rauto and Rman are two vessel regions defined by the manual annotated contour

Cman and of the automated segmented outline Cauto respectively.

Percentage of Area Difference (PAD) - Computes the segmentation area difference

as shown in Equation (5.22) :

PAD =
|Aauto − Aman|

Aman
(5.22)

where Aauto and Aman are the vessel areas for the automatic and manual contours

respectively.

Hausdroff Distance (HD) - Computes locally the distance between the manual and

automated contours as shown in Equation (5.23).

HD(Cauto, Cman) = maxp∈Cauto{maxq∈Cman [d(p, q)]} (5.23)

where p and q are points of the curves Cauto and Cman, respectively, and d(p, q) is the

Euclidean distance.

The quantitative results are summarized in Table 5.6. The comparative perfor-

mance of the proposed method is shown in Figs. 5.15, 5.16 and 5.17. The results

demonstrate that our method performs better than methods P1, P2, P4, P5, P6,

P8 and is comparable to methods P3 and P7 with respect to segmentation error
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measures for lumen and media. Our method segments both the lumen and media

simultaneously while method P7 segments the lumen only. Furthermore, our method

is fully automated while methods P3 and P7 are semi-automated. Finally, methods

P3 and P7 perform slice by slice segmentation in 2-D while our method performs the

segmentation in 3-D and not slice by slice.

Qualitative results are shown in Fig 5.18. The illustration demonstrates that our

method produced very good segmentation of the lumen and media. It can also be seen

from the illustration that the segmentations from our method are consistent for varied

topologies of the lumen and media. Constructing the graph with the shifted voxel

centers provides a more accurate encoding of the lumen and media surface positions

due to the application of the GVF by adaptively changing the regional node density

so that it is higher in regions where the target surface is expected to pass through.

Employing a subvoxel accuracy approach allows the segmentation to obtain a greater

precision with respect to the subvoxel accurate expert tracings.

Table 5.6: Evaluation measures of each method with respect to expert manual trac-
ings. Error measures expressed as mean and (standard deviation). An empty table
cell indicates that the method was not applied to Lumen or Media.

Participant Lumen Media

JM PAD HD JM PAD HD

P1 0.81 (0.12) 0.14 (0.13) 0.47 (0.39) 0.76 (0.13) 0.21 (0.16) 0.64 (0.48)

P2 0.83 (0.08) 0.14 (0.12) 0.51 (0.25)

P3 0.88 (0.05) 0.06 (0.05) 0.34 (0.14) 0.91 (0.04) 0.05 (0.04) 0.31 (0.12)

P4 0.77 (0.09) 0.15 (0.12) 0.47 (0.22) 0.74 (0.17) 0.23 (0.19) 0.76 (0.48)

P5 0.79 (0.08) 0.16 (0.09) 0.46 (0.30)

P6 0.84 (0.10) 0.12 (0.12) 0.57 (0.39)

P7 0.84 (0.08) 0.11 (0.12) 0.38 (0.26)

P8 0.81 (0.09) 0.11 (0.11) 0.42 (0.22) 0.79 (0.11) 0.19 (0.19) 0.60 (0.28)

Our Method 0.86 (0.04) 0.09 (0.03) 0.37 (0.14) 0.90 (0.03) 0.07 (0.03) 0.43 (0.12)
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Figure 5.15: Jaccard measure (JM) metric for IVUS data. Higher JM indicates a
larger overlap of the automated segmentation and manual segmentations. It can
be seen that the proposed method has the highest JM among all fully automated
methods and is comparable with the semi-automated method P3.
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Figure 5.18: Qualitative illustrations of lumen and media segmentation using our
method. Each image is a single frame of an IVUS multiframe dataset. Red - Lumen
expert tracing, Green - Media expert tracing, Yellow - Lumen segmentation (our
method), Blue - Media segmentation (our method).
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5.5 Discussion

A novel approach for segmentation of multiple surfaces with convex priors in irreg-

ularly sampled space (non-equidistant spacing between orthogonal adjoining nodes)

was proposed. The method advances the graph based segmentation framework in

several important ways. First, the proposed energy function incorporates a convex

surface smoothness penalty in irregularly sampled space through a convex function.

Second, the approach allows simultaneous segmentation of multiple surfaces in the

irregularly sampled space with the enforcement of a minimum separation constraint.

Third, the method guarantees global optimality. Lastly, the proposed method demon-

strates utility in achieving subvoxel and super resolution segmentation accuracy while

employing a convex penalty to model surface smoothness. To the best of our knowl-

edge, this is the first method that fulfills these three aims at the same time. The

hallmark of the proposed method is the ability to perform the segmentation task

in an irregularly sampled space which generalizes the optimal surface segmentation

framework.

The proposed method is also capable of incorporating convex surface separation

penalty while enforcing a minimum separation in the irregularly sampled space. The

incorporation of such a penalty would involve modifying the surface separation term

in the proposed energy function to impose a convex function based penalty when the

minimum separation constraint is not violated. The graph construction to enforce

such a penalty can be done using the same framework of the proposed method for

enforcing the surface smoothness constraint.

The method can be used in conjunction with the method proposed by Abrámoff

et. al [65] to incorporate prior information using trained hard and soft constraints [22]

to achieve subvoxel accuracy. Furthermore, the method can also be incorporated in

the image segmentation framework using truncated convex priors [77] [95] to achieve

subvoxel accuracy by constructing the convex part of the graph in the irregularly
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sampled space, thus providing a potential use for generic modelling of variety of

surface constraints to achieve subvoxel accuracy.

The global optimality of the proposed method is evident from the illustration in

Fig. 5.10, and shows that segmentation performed in the irregularly sampled space

based on the displacement of the voxel centers to correctly encode the partial volume

information is more accurate compared to the segmentation performed without any

use of partial volume information. The results on SD-OCT volumes of the retina

show that subvoxel precision is achieved and that segmentation accuracy compared

to the OSCS method and DOSCS segmentations is superior. The results on IVUS

images demonstrates that the method achieves high accuracy with respect to subvoxel

accurate expert tracings as compared to the methods reported in the IVUS challenge,

[84] while being fully automated and performing segmentation in 3-D. Our approach

is obviously not limited to these two modalities, for which the experiments were

conducted.

5.6 Conclusion

In this chapter, the focus was on Aim 2 as proposed for this thesis work. Herein,

the develoepd general framework for simultaneous segmentation of multiple surfaces

in the irregularly sampled space with convex priors for achievement of subvoxel and

super resolution segmentation accuracy was presented. An edge-weighted graph repre-

sentation was presented and a globally optimal solution with respect to the employed

objective function was achieved by solving a maximum flow problem. The surface

smoothness and surface separation constraints provide a flexible means for modelling

various inherent properties and interrelations of the desired surfaces in an irregularly

sampled grid space. The experiments show the applicability of the method and the

potential use for various subvoxel and super resolution segmetnation applications.

In principle, this work generalizes the framework of the graph search method. The

method is readily extensible to higher dimensions.
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CHAPTER 6
MULTIPLE SURFACE SEGMENTATION USING DEEP LEARNING

(AIM 3)

6.1 Introduction

Convolutional neural networks (CNN) are deep learning architectures [24] [6] [96].

A CNN is a multilayer perceptron and mainly consists of convolutional layers and

subsampling layers. The network topology exploits the stationary nature of natural

images by learning features using locally connected networks. Convolutional layers are

used to learn small feature detectors based on patches randomly sampled from a large

image. A feature in the image at some location can be calculated by convolving the

feature detector and the image at that location. A subsampling layer is used to reduce

the number of features in order to reduce the computational complexity, to introduce

invariance properties, and to reduce the chances of overfitting. It summarizes the

statistics of a feature over a region in the image.

The current state-of-the-art methods for surface segmentation require expert de-

signed transforms (generation of data cost), constraints and prior information (surface

smoothness and surface separation constraints), and tuning of parameters (coeffe-

cients of various energy terms). Furthermore, the these methods are time consuming

and require substntial memory depending on the volume size and the number of tar-

get surfaces. The primary objective of Aim 3 is to develop a deep learning (CNN)

based method which eliminates any human expert requirement and at the same time

is comptationally efficient both in terms of processing time and memory requirement.

Alternatively, most of the applications discussed in Section 2.2 with respect to

image segmentation are exmaples where CNNs are used to identify pixels or voxels

as belonging to a certain class, called classification or detection as the output of

standard CNN applications and not to identify boundaries in the images, i.e. surface

segmentation. The surface segmentation in an image would require the CNN to

directly infer upon the surface positions of the target surfaces.
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In this work a CNN based method was developed to directly learn the surface

positions from the input image volume. The key observations which lead to devel-

opment and application of this method is inspired by the graph search method by

making using of the column structure and exploiting the piece-wise smoothness of

surfaces.

6.2 Motivation from Graph Search for CNN
Based Surface Segmentation

In order to tackle the challenge of surface segmentation using CNNs, two key

questions need to be answered. First, since most of the CNN based methods have

been used for classification or detection, how can a boundary be detected using a

CNN? More precisely, what is the representation of a surface such that a CNN can

directly learn the surface positions? Second, how can the CNN learn the constraints

implicitly? We answer these questions by exploiting the column structure used in

graph search methods by representing the consecutive target surface positions for

given columns of an input image as a vector. For example, m consecutive target sur-

face positions are represented as a m-D vector, which may be interpreted as a point

in the m-D space, while maintaining a strict order with respect to the consecutiveness

of the target surface positions. The ordering of the target surface positions partially

encapsulates the smoothness of the surface. Thereafter, the error (loss) function uti-

lized in the CNN to back propagate the error in the network, is chosen as a Euclidean

loss function as shown in Equation (6.2), wherein the network adjusts the weights of

the various non linear transformations within the network to minimize the euclidean

distance between the CNN output and the target surface positions in the m-D space.

Another important observation with respect to surface smoothness is that in the

currently used graph search methods for segmentation of surfaces in OCT volumes,

the surface smoothness is piecewise in nature or in other words the surface smooth-

ness penalty (cost) enforced in these methods is the sum of the surface smoothness
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penalty ascertained using the difference of two consecutive surface positions. There-

fore, it is evident, the expert defined transformation is independently not sufficient

to get the resultant segmentation but requires an expert designed application specific

smoothing term (regularization with respect to the surface profile) to attain accu-

rate segmentations. However, a CNN should be expected to also learn the different

smoothness profiles of the target surface. Since, the smoothness is piecewise as can be

observed from the energy function shown in Equation 5.1, it should be sufficient for

the CNN to learn the different local surface profiles for individual segments of the sur-

face because the resultant surface is a combination of these segments. An example of

surface segments representing local smoothness is shown in Fig.6.1. Hence, the CNN

is trained on individual patches of the image with segments of the target surface. The

hallmark of this method is learning of local surface profiles, which indeed allows the

method to be generic in nature and does not require expert designed transformation

for different types of scan like (macula or Optic Nerve Head or normal or disease) as

required by the traditionally used methods for retinal layer segmentation.

In order to ensure the CNN learns the different local surface profiles, various data

augmentations are introduced during training. Furthermore, experiments were con-

ducted as discussed in Section 6.3.4, to discern the size of the local surface segment

sufficient to learn the surface profile locally with high accuracy, thus allowing reason-

ably accurate resulting target surface segmentation formed by the combination of the

local segments. The generation of data cost functions (expert designed transforma-

tions) as required by the graph based methods may also be interpreted as the features

the CNN learns to infer upon the target surface positions.
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Local 
smoothness 
(surface profile)

Figure 6.1: Illustration of local smoothness based on patches for a single B-scan
from an OCT image. The ILM surface is shown in red. It can be seen that the target
surface is infact a combination of sufficiently sized local surface segments which exhibit
various types of local surface smoothness (profiles).

6.3 Single Surface Segmentation Using CNNs
(Aim 3.1)

6.3.1 Method

Consider an OCT image I(x, y, z) of size X × Y × Z. A surface is defined as

S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and S(x, y) ∈ z =

{0, 1, ...Z − 1}. Each (x, y) pair forms a voxel column parallel to the z-axis, wherein

the surface S(x, y) intersects each column at a single voxel location. In this work, we

present a slice by slice segmentation of an OCT volume. Patches are extracted from

B-scans with the target machine generated truth. A patch P (x1, z) is of size N × Z,

where x1 ∈ x1 = {0, 1, ...N − 1}, z ∈ z ={0, 1, ...Z − 1} and N is an even number.

The target surface to be learnt from P is S(x2) ∈ z = {0, 1, ...Z−1} where x2 ∈ x2 =

{N
4
, N

4
+1...3N

4
−1}. Essentially, the target surface to be learnt is the surface locations

for the middle N
2

consecutive columns in P . An example of patch extraction with the

target surface is shown in Fig.6.2.

After the extraction of the patches, data augmentation is performed by a com-
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Figure 6.2: Illustration of patch extraction from a B-scan. The target surface is shown
in red. The extracted patch shown on the right with the corresponding surface to be
used as target for training CNN on the given patch.

bination of translation and rotation to the target surface profile with respect to the

image patch. Data augmentation is necessary to increase variance and ensuring that

various different types of local profiles with given texture information is learnt by

the CNN, thus allowing the CNN to infer on every possible surface profile. For each

training patch, three additional training patches were created as described below.

• A random translation value was chosen between -250 and 250 such that the

translation was within the range of the patch size. The training patch and the

corresponding machine generated truth were translated accordingly.

• A random rotation value was chosen between -55 degrees and 55 degrees. The

training patch and the corresponding machine generated truth were rotated

accordingly by that amount.

• A combination of the rotation and translation was used to generate another

patch.

Special care was taken to extend the generated patches to the original patch size by

padding zeros. Examples of data augmentation on patches is shown in Fig.6.3.
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(a) (b) (c) (d)

Figure 6.3: Illustration of data augmentation applied to an input patch. The target
surface is shown in red. (a)Extracted patch from a B-scan (b)Translation (c)Rotation
(d)Translation and rotation, as applied to (a).

6.3.2 Network Architecture

The CNN architecture used in our work is shown in Fig.6.4. The architecture

was used to train on patches with N=32. The CNN contains three convolution

layers [6], each of which is followed by a max-pooling layer [6] with stride length

of two. Thereafter, it is followed by two fully connected layers [6] where the last

fully connected layer represents the final output of the middle N
2

surface positions for

P . From the input patch to the final fully connected layer, the sizes of the feature

maps keep decreasing, which helps remove the potential redundant information in P

and obtains discriminative features required for inferring the output surface positions

for P . Lastly, a Euclidean loss function as shown in Equation (6.2) is utilized to

compute the error between CNN output and machine generated truth of P for back

propagation during the training phase.

The network starts from a convolution layer, which convolves the input with a

number of convolution kernels and yields corresponding number of output feature

maps. The convolution operation between an input f and a convolution kernel h is
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Figure 6.4: The architecture of the CNN learned in our work for N=32. The numbers
along each side of the cuboid indicate the dimensions of the feature maps. The inside
cuboid (green) represents the convolution kernel and the inside square (green) rep-
resents the pooling region size. The number of hidden neurons in the fully connected
layers are marked aside. IP=Input Patch, CV-L=Convolution Layer, MP-L=Max-
Pooling Layer, FC-L=Fully Connected Layer, E=Euclidean Loss Layer.

shown in Equation (6.1).

s = max(0,
∑
c

fc ∗ hc + b) (6.1)

where fc and hc is the c-th slice from the feature map and the convolution kernel

respectively, b is the scalar bias and ∗ is the convolution operation.

We use the rectified linear unit (ReLu) [6] non-linearity in Equation (6.1) for each

convolution to perform the non-linear transformations. The ReLu is expressed as s

= max(0, r), where r is the convolution output. Following each convolution layer,

a max-pooling layer is introduced, which operates independently on each feature

map produced by the previous convolution layer and downsamples each feature map

according to the chosen stride size along both the height and width by employing a

max operation.

After, three convolution and max-pooling layers, fully connected layers are em-

ployed wherein each neuron in the fully connected layer have full connections to all

activations in the previous layer. Finally, a Euclidean loss function (used for regress-
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ing to real-valued labels) is employed to compute the error on the CNN output.

Unsigned mean surface positioning error [97] is the commonly used error metric

for evaluation of surface segmentation accuracy in OCT images. The Euclidean loss

function as shown in Equation (6.2), infact computes sum of the squared unsigned

surface positioning error between the N
2

surface position of the CNN output and the

machine generated truth for P , thereby reflecting the exact squared surface posi-

tioning error to be used for back propagation during training the network. In other

words, the loss function can be interpreted as enforcing a quadratic penalty on the

exact difference in the surface positions between the CNN output and the truth.

E =

k1=
N
2
−1∑

k1=0

(ak1 − ak1)2 (6.2)

where ak1 and ak1 is the k1-th surface position of the machine generated truth and

CNN output respectively for a given P .

6.3.3 Experiment Objectives

In order to train a CNN for surface segmentation, ample amount of OCT data with

expert tracings of the target surface is required. However, even when sufficient image

data is available, human expert, such as retinal specialists or glaucoma specialists,

reference surfaces are extremely expensive, labour intensive, and subject to intra-

and interobserver variability. Therefore for this experiment we produced machine

generated truth. Experiments using human expert generated truth was carried for

mutiple surface segmentation as presented in Section 6.4.3. The popular graph search

method [2] was employed for segmenting the OCT data to obtain reference surface

tracings to be used by the CNN during the training process. We shall refer to these

segmentations as machine generated truth. Although, the machine generated truth

may not be highly accurate for some data volumes, they are accurate enough for the

majority of the data such that the CNN can successful learn the surface segmentations.
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Figure 6.5: Illustration of difference in surface profiles on a single Macula B-scan and
ONH B-scan. The ILM surface is shown in red. (left) Macula scan. (right) ONH
scan.

The objectives of the experiment are- 1) To demonstrate applicability of the

method for segmenting a single suface. 2)To demonstrate that a CNN can learn

the target surface with high accuracy with reasonably accurate machine generated

annotations and infact yields more accurate segmentations than the graph search

method [2] for OCT cases where the method is not accurate enough. 3) The method

is invariant with respect to different surface profiles as shall be shown qualitatively by

training the networks on Macular scans and infering on Optic Nerve Head Scans. The

target surface profile in OCTs vary for numerous reasons, one of them being, type of

scans (Macula or Optic Nerve Head). An example is shown in Fig.6.5 to illustrate the

difference in surface profile of the Internal Limiting Membrane (ILM) for a Macula

and Optic Nerve Head (ONH) B-scan.

6.3.4 Experiment Setting

To demonstrate our method, we segment the Internal Limiting Membrane (ILM)

in the OCT volumes as shown in Fig.6.5. 800 SD-OCT scans of normal eyes and eyes

with Glaucoma were obtained from an anonymized population study. The Topcon
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1000 Spectral Domain OCT scanner was used. The data consisted of both macular

and optic nerve head (ONH) centered 3-D volumes of size (512 × 128 × 650) voxels

with voxel size 11.72 × 3.5 × 46.88 µm3. The data was divided randomly into 700

volumes for training, 90 volumes for testing and 10 volumes for validation. Human

expert manual tracings was obtained for 6 B-scans, selected randomly (from 6 sections

of 20 B-scans each) in each validation volume. Thus, expert manual tracings for the

ILM were only available for 6 B-scans in each of the 10 validation OCT volumes

and therefore we employed the multi-resolution graph search approach [20] to obtain

machine generated truth over the whole volume image to be used in the training and

testing of our method.

The volumes were denoised by applying a median filter of size 5 × 5 × 5. Next

the data is normalized with the resultant voxel intensity range varying from -1 to 1.

Thereafter, patches of size N × 650 with their respective machine generated truth for

the middle N
2

consecutive surface positions is extracted using data augmentation as

discussed in Section 6.3.1, for both the training and testing volumes, resulting in a

training set of 800, 000 and testing set of 90, 000 unique patches. We trained 4 network

architectures, similar to the network architecture shown in Fig.6.4 for an input patch

size with N = 48, 32, 16, 8 to discern and analyze the trade off between accuracy and

patch size to be used for sufficiently learning the target surface positions with local

smoothness in order to produce highly accurate resultant surface segmentations. The

unsigned mean surface positioning error (UMSP) as shown in Eqn (6.3) was used

to evaluate the accuracy of the CNN output surface positions with respect to the

machine generated truth for the patches in the test set.

UMSP =
1

M

k2=M−1∑
k2=0

1

N/2

k1=
N
2
−1∑

k1=0

abs(ak2k1 − a
k2
k1

) (6.3)

where M is the number of patches, ak2k1 and ak2k1 is the k1-th surface position of the
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machine generated truth and CNN output respectively for the k2-th patch.

The best CNN was selected out of the 4 trained networks which had the least

UMSP error on the test set and was applied to the 10 validation volumes. Herein, the

complete surface for each validation volume was segmented by creating 512
N/2

patches

from each B-scan. The UMSP was computed for each validation volume in a similar

manner as shown in Equation (6.3).

In our study we used the NVIDIA GTX Titan X GPU. The publicly available

deep learning toolkit CAFFE [98] was used as the CNN implementation in this work.

6.3.5 Results

Quantitative results of the four trained CNNs with N = 48, 32, 16, 8 is shown

in Table 6.1. The testing UMSP error from CNN-3 and CNN-4 are comparable and

therefore, we select CNN-3 as the final CNN for validation, since it has a smaller patch

size and slightly outperforms CNN-4. The UMSP error for the surface segmentation

obtained from CNN-3 on the validation volumes was also compared to the expert

manual tracings. The validation UMSP error for CNN-3 was 0.95±0.06 voxels. Some

illustrative results of the surface segmentations from the proposed method using CNN-

3 on validation volumes is shown in Fig. 6.6 and it can be observed that the proposed

method yields good, consistent and qualitatively similar segmentations to the expert

manual tracings. On closer analysis of some B-scans as shown in Fig. 6.7(a), it can be

observed that the proposed method segmentations are of superior quality compared to

machine generated truth for cases where the machine generated truth is not accurate

enough in test set.

Furthermore, the potential and strength of the proposed method is more evident

when the trained CNN was applied on the ONH scans where the ILM surface profile

is more complex (Fig. 6.5). Although, the CNN was trained on macular scans, the

superior quality of the segmentations produced by the proposed method on the ONH

scans can be seen in Fig. 6.7(b)(c).
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(a) (b) (c) 

Figure 6.6: (a)-(b) Expert manual tracings and segmentation from the proposed
method for the ILM surface on the same macular B-scan is shown in cyan and yellow
respectively. (c) 3-D rendering of the segmented surface using the proposed method
for a validation macular OCT volume.

Table 6.1: UMSP error for single surface on testing set from CNN trained for patch
size N × Z.

CNN no. Patch size No. of surface positions Testing UMSP error (voxels)
CNN-1 8 × 650 4 2.76
CNN-2 16 × 650 8 1.64
CNN-3 32 × 650 16 1.26
CNN-4 48 × 650 24 1.32
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(a) (b) (c) 

Figure 6.7: Machine generated truth (from graph search method) and segmentation
from the proposed method for the ILM surface is shown in red and yellow respectively.
Top row- B-scans in original resolution. Bottom row- Magnified version of the blue
boxes to demonstrate superior quality of segmentation from the proposed method.
(a)Macular B-scan from test set. (b)-(c) ONH B-scans. Unlike the graph search
method where post processing is applied to the output segmentation, no such post
processing is applied to the segmentations obtained from the proposed method.

6.4 Multiple Surface Segmentation Using
CNNs (Aim 3.2)

The tissue boundaries in OCTs vary by presence and severity of disease. An

example is shown in Fig.6.8(a)(b) to illustrate the difference in profile for the Internal

Limiting Membrane (ILM) and Inner Retinal Pigment Epithelium (IRPE) in a normal

eye and in an eye with AMD.

The method for multiple surface segmentation is very similar to the single surface

case and is as follows. Similar to the single surface case, for detecting λ surfaces,

the surface positions are represented as a m2-D vector, where λ = {1, 2, . . . λ}, m2 =

λ×m1 and m1 consecutive surface postions for a surface index i (i ∈ λ) are given by

{((i− 1)×m1) + 1, ((i− 1)×m1) + 2, . . . ((i− 1)×m1) +m1} index elements in the

m2-D vector.
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S1

S2

S1

S2

Figure 6.8: Illustration of difference in surface profiles on a single B-scan. (left)
Normal Eye (right) Eye with AMD. S1 = ILM and S2 = IRPE, are shown in red.

6.4.1 Method

Consider a volumetric image I(x, y, z) of size X × Y × Z. A surface is defined as

S(x, y), where x ∈ x = {0, 1, ...X − 1}, y ∈ y ={0, 1, ...Y − 1} and S(x, y) ∈ z =

{0, 1, ...Z−1}. Each (x, y) pair forms a voxel column parallel to the z-axis, wherein the

surface S(x, y) intersects each column at a single voxel location. For simultaneously

segmenting λ(λ ≥ 2) surfaces, the goal of the CNN is to learn the surface postions

Si(x, y) (i ∈ λ) for columns formed by each (x, y) pair. In this work, we present a slice

by slice segmentation of a 3-D volumetric image applied on OCT volumes. Patches

are extracted from B-scans with the target Reference Standard (RS). A patch P (x1, z)

is of size N × Z, where x1 ∈ x1 = {0, 1, ...N − 1}, z ∈ z ={0, 1, ...Z − 1} and N is a

multiple of 4. The target surfaces Si’s to be learnt simultaneously from P is Si(x2) ∈ z

= {0, 1, ...Z−1}, where x2 ∈ x2 = {N
4
, N

4
+1...3N

4
−1}. Essentially, the target surfaces

to be learnt is the surface locations for the middle N
2

consecutive columns in P . Then

data augmentation is performed as described before.

6.4.2 Network Architecture

For segmenting λ surfaces simultaneously, the CNN learns λ surfaces for each

patch. In our work, λ = 2 surfaces are segmented simultaneously and therefore for
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each patch, the CNN learns two surfaces. The CNN architecture used in our work

is shown in Fig.6.9, employed for λ = 2 and patches with N = 32. The architecture

was used to train on patches with N=32. The CNN contains three convolution

layers [6], each of which is followed by a max-pooling layer [6] with stride length

of two. Thereafter, it is followed by two fully connected layers [6], where the last

fully connected layer represents the final output of the middle N
2

surface positions

for 2 target surfaces in P . We use the rectified linear unit (ReLu) [6] non-linearity

for each convolution to perform the non-linear transformations. Lastly, a Euclidean

loss function (used for regressing to real-valued labels) as shown in Equation (6.4) is

utilized to compute the error between CNN outputs and RS of Si’s (i ∈ λ) within P

for back propagation during the training phase. Unsigned mean surface positioning

error (UMSP) as shown in as shown in Eqn (6.3) is one of the commonly used error

metric for evaluation of surface segmentation accuracy. The Euclidean loss function

(E), essentially computes sum of the squared unsigned surface positioning error over

the N
2

consecutive surface position for Si’s of the CNN output and the RS for P ,

thereby reflecting the exact squared surface positioning error. to be used for back

propagation during training the network.

E =
i=λ∑
i=1

k1=
N
2
−1∑

k1=0

(aik1 − a
i
k2

)2 (6.4)

where k2 = ((i− 1)×N/2) + k1, a
i
k1

and aik2 is the k1-th surface position of reference

standard and CNN output respectively, for surface Si in a given P .

6.4.3 Experiments

The experiments compare segmentation accuracy of the proposed CNN based

method (CNN-S) and the G-OSC method [9]. The two surfaces simultaneously seg-

mented in this study are S1-ILM and S2-IRPE as shown in Fig. 6.8. 115 OCT scans

of normal eyes, 269 OCT scans of eyes with AMD and their respective reference
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Figure 6.9: The architecture of the CNN learned in our work forN=32 and λ = 2. The
numbers along each side of the cuboid indicate the dimensions of the feature maps.
The inside cuboid (green) represents the convolution kernel and the inside square
(green) represents the pooling region size. The number of hidden neurons in the fully
connected layers are marked on the side. IP=Input Patch, CV-L=Convolution Layer,
MP-L=Max-Pooling Layer, FC-L=Fully Connected Layer, E=Euclidean Loss Layer.

standards (RS) (created by a single expert with aid of the DOCTRAP software [99])

were obtained from the publicly available repository [68]. The 3-D volume size was

1000× 100× 512 voxels with voxel size 6.54× 67× 3.23 µm3. The data volumes were

divided into a training set (79 normal and 187 AMD), a testing set (16 normal and 62

AMD) and a validation set (20 normal and 20 AMD). The volumes were denoised by

applying a median filter of size 5× 5× 5 and normalized with the resultant voxel in-

tensity varying from -1 to 1. Thereafter, patches of size N ×512 with their respective

RS for the middle N
2

consecutive surface positions for S1 and S2 is extracted using

data augmentation, for training and testing volumes, resulting in a training set of

340, 000 and testing set of 70, 000 patches. In our work, we use N = 32. The UMSP,

calculated as the average of absolute differences between the computed surface and

reference standard for each voxel column in the image, was used to evaluate the ac-

curacy. The complete surfaces for each validation volume were segmented using the

CNN-S method by creating 1016
N/2

patches from each B-scan where each B-scan was

zero padded with 8 voxel columns at each extremity. Statistical significance of the

observed differences was determined by paired Student t-tests with a p value of 0.05
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was considered significant. In our study we used a single NVIDIA Titan X GPU for

training the CNN. The publicly available deep learning toolkit CAFFE [98] was used

as the CNN implementation. The validation of the G-OSC and CNN-S method were

carried out on a on a Linux workstation (3.4 GHz, 16 GB memory). A single CNN

was trained to segment both the normal and AMD OCT scans. For a comprehensive

comparison, three experiments were performed with the G-OSC method. The first

experiment (G-OSC 1) involved segmenting the surfaces in both normal and AMD

OCT scans using a single set of optimized parameters. The second (G-OSC 2) and

third (G-OSC 3) experiment involved segmenting the normal and AMD OCT scans

with different set of expert-designed, optimized parameters, respectively.

6.4.4 Results

The UMSP of the CNN-S method on the testing patches for S1 was 1.02 ± 0.66

voxels and for S2 was 1.73± 0.91 voxels. The quantitative comparisons between the

proposed CNN-S method and the G-OSC method on the validation volumes is sum-

marized in Table 6.2. For the entire validation data, the proposed method produced

a significantly lower UMSPE for surfaces S1 (p < 0.01) and S2 (p < 0.01), compared

to the segmentation results of G-OSC 1, G-OSC 2 and G-OSC 3. Illustrative results

of segmentations from the CNN-S, G-OSC 2 and G-OSC 3 methods on validation

volumes are shown in Fig. 6.11. Herein, the illustrations for G-OSC 2 and G-OSC 3

is shown. The CNN-S method yields consistent and qualitatively superior segmenta-

tions with respect to the G-OSC method. On closer analysis of some B-scans in the

validation data, the CNN-S method produceda high quality segmentation for a few

cases where the RS was not accurate enough as verifed by an retinal specialist, (4th

row in Fig. 6.11). The features extracted from the first convolution layer is shown in

Fig. 6.10. The CNN required 17 days to train on the GPU. The CNN-S method with

average computation time of 94.34 seconds (95.35 MB memory) is much faster than

G-OSC with average computation time of 2837.46 seconds (6.87 GB memory).
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Figure 6.10: Illustration of 20 chosen feature maps from the first convolution layer
for a given patch shown on the left. The ILM and IRPE are shown in red.

6.5 Discussion

The results from both the experiments show that a CNN based approach can

be used for segmentation of surfaces in volumetric images, thus eliminating the re-

quirement of human intervention for expert design of various transforms. The first

experiment for single surface segmentation leverages commonly used surface segmen-

tation method [20] to obtain machine generated truth for a large amount of data, thus

allowing training of the CNN. The results also show that our CNN based method can

learn the segmentations with sufficient accuracy and in fact results in qualitatively

better segmentations for cases where the machine generated surface segmentation is

not accurate enough. The developed method demonstrates that even if human de-

noted labels/truth is unavailable, a CNN can sufficiently learn the target based on a

reliable accurate enough automated/semi-automated method.

The second experiment for multiple surface segmentation using CNN demonstrates
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Figure 6.11: Each row shows the same B-scan from a Normal or AMD OCT volume.
(a) CNN-S vs. RS (b) G-OSC vs. RS, for surfaces S1 =ILM and S2 = IRPE. RS =
Reference Standard, Red = reference standard, Green = Segmentation using proposed
method and Blue = Segmentation using G-OSC method. In the 4th row, we had the
reference standard reviewed by a fellow-ship trained retinal specialist, who stated
that the CNN-S method is closer to the real surface than the reference standard.
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Table 6.2: UMSPE expressed as (mean± 95% CI) in voxels. RS - Reference Standard.
A single CNN was trained to infer on each type of data while 3 different set of
parameters were used for the G-OSC method. N = 32 was used as the patch size
(32× 512).

Normal and AMD Normal AMD
G-OSC 1 CNN-S G-OSC 2 CNN-S G-OSC 3 CNN-S

Surface vs. RS vs. RS vs. RS vs. RS vs. RS vs.RS

S1 1.45 ± 0.19 0.98 ± 0.08 1.19 ± 0.05 0.89 ± 0.07 1.37 ± 0.22 1.06 ± 0.11
S2 3.17 ± 0.43 1.56 ± 0.15 1.41 ± 0.11 1.28 ± 0.10 2.88 ± 0.54 1.83 ± 0.26

Overall 2.31 ± 0.29 1.27 ± 0.13 1.31 ± 0.07 1.08 ± 0.08 2.13 ± 0.39 1.44 ± 0.19

learning of the surface segmentation from expert manual tracings. The results show

that segmentations by CN-S are better than those from the G-OSC method, while

eliminating the requirement of expert designed transforms or adjustments.

The key aspect of the method is the elimination of expert intervention, efficien-

cies in terms of memory requirement and processing times and the generic nature of

the method compared to traditional graph search approaches. This is possible be-

cause learning local smoothness allows for a much more generic way of learning the

segmentation so that it is robust across a variety of target surface profiles as shown

in the illustrations in Fig. 6.6 and 6.11. The experiments show that the developed

method used a single CNN to learn various local surface profiles for macular scans

in the first case and both normal and AMD data in the second case. The strength

and genericness of the method can be seen from Fig 6.7 where the CNN learnt from

surface profiles of macular scans but was still able to provide superior qualitative

segmentations compared to the multi-resolution graph search method on ONH scans.

In the second experiment, comparison to G-OSC 1 shows that the CNN-S methods

outperforms the G-OSC method. If the parameters are tuned specifically for each

type of disease by using expert prior knowledge while using the G-OSC method, as

in the cases of G-OSC 2 and G-OSC 3, a common practice in medical image analy-

sis, the results depict that the CNN-S method still results in superior performance.

Therefore, the method has potential for applicability for in clinical setting, where a
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single network may be trained for segmenting OCT volumes of various types, instead

of mutiple versions of graph search based method to tackle each type of OCT volume.

Another advantage of the proposed method can be realized with respect to the

computation time for obtaining the surface segmentations. The graph search method

[2] requires a computation time of minutes to hours for obtaining the segmentation of a

OCT volume, mainly because the methods requires processing of the entire volume at

once. The improved graph based method [20] tackled this problem by using an expert

designed multi-resolution scheme to reduce the computation time to minutes. Our

proposed CNN based method is patch based and inference on each patch is computed

independently of the other, thereby allowing the use of sophisticated hardware like

GPUs to process the entire set of patches for a given volume within seconds. The

second experiment showed that the inference using the developed method is also much

faster than G-OSC method and requires less memory. In fact we plan to parallelize the

segmentation for multiple patches, thereby further reducing the computation time,

allowing more effetcive interactive use.

The smoothness of a surface at a voxel column level can also be imposed within

the loss function of the CNN by adding to the current loss function another term

that sums the squared difference of the difference between surface positions of the

neighboring columns given by the CNN output and reference segmentation. Such

an incorporation to the loss function shall potentially make the CNN more robust,

accurate and closely mimic the smoothness terms used in the state-of-the-art methods

[47] [2] [20]. The method is readily extensible to 3-D segmentation by employing a

3-D CNN architecture with corresponding representation of the surface for the CNN

to train on 3-D patches wgile employing 3-D convolutions.

There are several issues with the developed approach. First, the current work

trains on data from images obtained from one kind of a scanner, however it is pos-

sible that the trained CNN may not produce consistent segmentations on images
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obtained from a different kind of scanner due to the difference in textural and spatial

information. Such a challenge may be tackled by creating a training set that spans

across images from different types of scanner or by training another CNN which re-

fines the output of the proposed CNN for the given different type of scanner. Second,

a drawback of any such learning approach in medical imaging is the limited amount

of available training data. Third, the method may require long time to train the

network depending on the available processing hardware.

6.6 Conclusion

In this chapter, the focus was to accomplish Aim 3 of this thesis work by develop-

ing a CNN based method for segmentation of surfaces in volumetric images without

any human expert intervention and implicitly learned surface smoothness. The exper-

iments demonstrated the performance and potential of the developed method through

application on normal OCT volumes to segment the ILM surface as well as on normal

and AMD OCT volumes to segment the ILM and IRPE surface. The single surface

segmentation experiment results show high quantitative accuracy in segmentation of

macula scans, while also yielding higher quality segmentation for ONH scans, even

though the CNN was trained on macular scans only. The multiple surface segmetna-

tion experiment results show superior segmentation accuracy, lower processing time

and memory requirements compared to the G-OSC method. To the best of our knowl-

edge, this is the first method of its kind that does not require any human intervention

for surface segmentation.
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CHAPTER 7
CONCLUSIONS

In this dissertation, novel multiple surface segmentation methods using graph

search based and deep learning based approaches were developed and validated on

a variety of intra-retinal layer segmentation applications in SD-OCT volumes. The

development of the methods were motivated from real world segmentation problems

wherein, the traditional graph search methods are not efficient enough and may have

difficulty in solving the segmentation problem. Furthermore, the need for a generic

method for multiple surface segmentation which does not require human expert in-

tervention was discussed and a CNN based method was proposed to segment surfaces

which is both efficient and more genreic as compared to tradional graph search meth-

ods. Herein, a breif review of each of those methods and possible related future works

are discussed.

The multiple surface segmentation with truncated convex priors is motivated from

real world applications as in the case of segmenting surfaces in SD-OCT volumes

with AMD, PED and glaucoma; wherein sharp changes in surface smoothness and

abrupt changes in surface separation between two mutually coupled surfaces may

exist because of the presence of a pathology. Traditional graph search based methods

are inefficent and may find difficulty in segmenting such surfaces becuase the surface

constraints generally over smooth the sharp surface jumps or over penalize the abrupt

changes in surface separations. The proposed method with truncated convex priors,

truncates the convex penalty by a pre-defined truncation factor. Thus, allowing for

segmentation of complex surfaces and acts as a disconinuity preserving method. The

method was validated on a variety of such surface segmentation applications and

the experiment results shows the impoved performance and segmentation accuracy

of the method as compared to grpah search methods. The method is also capable of

segmenting a large volumetric image in the original resolution because of the iterative
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nature of the approach based on creating small subgraphs at each iteration and hence,

does not require a multiple resolution approach.

The proposed method for truncated convex priors, may be extended and used to

constrain two closely related surfaces. For example, if the inner and outer aspect of

the retinal pigment epithelial (RPE) in diseased cases follows a similar surface pro-

file (the layer thickness is constant), then while segmenting other complex surfaces

simultaneously with the two RPE layers, a convex penalty without truncation can be

imposed between the two surfaces and the other compex surfaces may be modeled

with the truncated convex priors. Also, similar to the multiple resolution approach,

the image may be segmented in the downsampled version to create the surface ini-

tialization for the upsampled scale, which may allow the method to be more acurate

and achieve faster convergence.

The optimal surface segmentation with convex priors method for irrgularly sam-

pled space is developed for practical purposes of subvoxel and super resolution accu-

rate segmentations. The current graph search methods are not capable of segmen-

tations with subvoxel and super resolution accuracy, due to the inherenet nature of

the construction and encoding of the underlying graph. Herein, nodes in the graph

represent the center of voxels which does not explot the partial volume effects in the

images, which can be utilized to achieve subvoxel and super resolution segmentation

accuracy. Thus, the method optimal surface segmentation method for irregularly sam-

pled space is proposed in this work. The developed method was extensively, validated

for subvoxel and super resolution accuracy applications. The proof of correctenss of

the graph construction with respect to the global optimality of the solution was also

presented. The method, infact generalizes the traditional graph search method, which

is a special case of the developed method.

For future work, it will be interesting to integrate the approach with the trun-

cated convex method by modelling the convex part of the graph using the developed



www.manaraa.com

126

method, thus possibly further increasing the segmentation accuracy of the method for

surface segmentations, especially for disease cases. Furthermore, region of interest is

a prominent tool employed for various image segmentation application. The goal of

the region of interest is to reduce the search space for a segmentation solution. Graph

search based methods utilized for multiple surface segmentation of retinal surfaces in

OCT volumes, extensively use region of interests to decrease the size of the solution

space and to provide for a more strict solution space such that the target surface

segmentation is more accurate. Generally, the design of the region of interest in these

methods defines a region with a constant length for each column in the graph (like a

uniformly sized band based on the pre-segmentation result). The developed method

can be applied to simultaneously segment multiple surfaces in irregularly shaped and

possibly disjoint region of interests. Once the region of interest is generated, the

graph is built only inside the region of interest using the proposed method to search

the target segmentations, irrespective of the shape and location of the region of in-

terest. This shall allow for more flexibility and usage of machine learning techniques

to design the region of interests.

From the developed methods for Aim 1 and Aim 2 of this thesis work, it is

clear that even though graph based segmentation methods are flexible and robust,

they suffer from major drawbacks. The methods have to be redesigned for different

kind of applications which requires expert design of the various terms in the energy

function of the graphs. The design of these terms, require expert defined transforms,

feature extractions, constraint design and parameter tuning. The multi-resoltion

method may also require expert defined schemes of the order of segmentation of

the various surfaces. Thus, the multiple surface segmentation method using deep

learning, developed in this work is motivated from the need of a generic method

for surface segmentation which does not require expert human intervention. The

method was developed by exploiting certain aspects of the graph search method,
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specifically the usage of column structure. The developed CNN based method learns

the required transformations from the training data. The method was validated

on normal and AMD OCT volumes for single and multiple surface segmetnation

applications. The experiments clearly demonstrated that the method is infact more

generic and accurate than graph search. The local patch based surface profile learning,

allows the method to be faster and also more generic. The experiments showed that

the developed method is efficient in terms of memory requirement and processing time.

The developed method, has the potential of training one universal network which can

segment the retinal layer in OCTs of any type in clinical settings. However, the

method is limited by the amount of data available.

Future works may include incorporation of surface smoothness and surface sepa-

ration constraints as used in graph search within the loss function used in the training

of the CNN to more closely mimic the graph search framework. Recently, U-Net [100]

has gained a lot of popularity for biomedical image segmentation where the voxels

are classifed as belonging to a class. The U-Net could be used in conjunction with

the developed method by first training the U-Net and then combining the solution of

the U-Net to the patch used in training of the CNN. Such a combination may result

in more robustness and accurate segmentations. Further, another area of future work

may be to extend the developed method to not only segment the surfaces but also

classify the OCT volumes into various classes like disease and no disease.

In this doctoral dissertation novel multiple surface segmentation methods were

developed and validated extensively for a variety of surface segmetnation problems.

The developed methods are readily extendable to higher dimensions and are not

limited to the image modalities or segmentaion applications discussed in this work.
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Abràmoff, “Segmentation of the optic disc in 3-d oct scans of the optic nerve
head,” Medical Imaging, IEEE Transactions on, vol. 29, no. 1, pp. 159–168,
2010.

[63] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, Jan 1949.

[64] A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, and D. Santana-Cedrés, “Ac-
curate subpixel edge location based on partial area effect,” Image and Vision
Computing, vol. 31, no. 1, pp. 72–90, 2013.
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